Program educational objectives

- 1. Graduates will able to succeed in positions in engineering practice or research, and in other fields they choose to pursue.
- 2. Graduates will become a responsible member of society.
- 3. Graduates will be leaders, both in their chosen profession and in other activities.
- 4. Graduates will address the complexities of real life engineering problems and be able to formulate solutions that are technically sound, economically feasible & sustainable.

PROGRAM OUTCOMES

Upon successful completion of this course it is expected that electronics graduate will be able to:

- a. Understand and proficiently apply the relevant sciences & scientific methods to Electronics engineering to design solutions to complex problems in electronics systems, electronic circuits & control processes.
- b. Identify, interpret & critically appraise current developments, advanced technologies and apply them to electronic engineering field to enhance reliability and efficiency of electronics based systems, components and programs.
- c. Identify and synthesize the constraints posed by economic factors, safety considerations, environmental impacts and professional standards on Electronics engineering practices and use them for professional judgments in solving the critical field problems for sustainable technological development of nation.
- d. Determine, analyze and proficiently apply theoretical and numerical analysis of Phenomenon to

conceive, control & optimize the performance of Electronics engineering systems used for different applications such as in navigation, automobiles, transportation, and automation.

- e. Identify and critically evaluate the performance of a electronics engineering systems in terms of economics, safety, and social and physical environment and implement approaches to minimize any adverse impact leading to sustainable development of society.
- f. Understand and proficiently apply a systems approach for electronics system design and addressing the broad contextual constraints, leading to sustainable developments of global level electronics technologies and standards.

- g. Show awareness and ability to proficiently apply project management tools and methodologies to the planning and execution of projects leading to electronics engineering solutions of professional standards.
- h. Develop & implement creative and innovative approaches to enhance the reliability, efficiency and economical aspect of electronics systems for sustainable improvement of electronics technologies.
- i. Communicate effectively on both technical and general issues with peers, associate, clients and the general public to find solutions using technical proficiency.
- j Operate effectively and professionally within a team environment to solve complex problems of analyze, design and development of electronics systems.
- k. Use all fundamental knowledge of electronics engineering, sciences and mathematics to plan, organize and use resources efficiently to reduce adverse effect on environments.

SY B. Tech (E&TC) Course Outcomes for all subjects

1. BTEXC302 Analog Circuits

Course Outcomes:

On completion of the course, students will be able to:

1. Understand the characteristics of IC and Op-Amp and identify the internal structure.

2. Understand and identify various manufacturing techniques.

3. Derive and determine various performances based parameters and their significance for Op-Amp.

4. Comply and verify parameters after exciting IC by any stated method.

5. Analyze and identify the closed loop stability considerations and I/O limitations.

6. Analyze and identify linear and nonlinear applications of Op-Amp.

7. Understand and verify results (levels of V & I) with hardware implementation.

8. Implement hardwired circuit to test performance and application for what it is being designed.

2. BTEXC303 Electronic Devices & Circuits

Course Outcomes:

On completion of the course, students will be able to:

1. Comply and verify parameters after exciting devices by any stated method.

- 2. Implement circuit and test the performance.
- 3. Analyze small signal model of FET and MOSFET.
- 4. Explain behavior of FET at low frequency.
- 5. Design an adjustable voltage regulator circuits.

3. BTEXC304 Network Analysis

Course Outcomes:

On completion of the course, students will be able to:

1. Apply knowledge of mathematics to solve numerical based on network simplification and it will be used to analyze the same.

2. Design passive filters and attenuators theoretically and practically. To apply

knowledge for design of active filters as well as digital filters and even extend this to advance adaptive filters.

3. Identify issues related to transmission of signals, analyze different RLC networks.

4. Find technology recognition for the benefit of the society.

4. BTEXC305 Digital Logic Design

Course Outcomes:

On completion of the course, students will be able to:

1. Use the basic logic gates and various reduction techniques of digital logic circuit in detail.

2. Design combinational and sequential circuits.

3. Design and implement hardware circuit to test performance and application.

4. Understand the architecture and use of VHDL for basic operations and Simulate using simulation software.

5. BTHM3401 Basic Human Rights

Course Outcomes:

On completion of the course, students will be able to:

1. Simply put, human rights education is all learning that develops the knowledge, skills, and values of human rights.

2. Strengthen the respect for human rights and fundamental freedoms.

3. Enable all persons to participate effectively in a free society.

4. Learn about human rights principles, such as the universality, indivisibility, and interdependence of human rights.

5. Learn about regional, national, state, and local law that reinforces international human rights law.

6. Learn and know about and being able to use global, regional, national, and local human rights instruments and mechanisms for the protection of human rights.

6. BTEXC401 Electrical Machines and Instruments

Course Outcomes:

On completion of the course, students will be able to:

1. The ability to formulate and then analyze the working of any electrical machine using mathematical model under loaded and unloaded conditions.

2. The skill to analyze the response of any electrical machine.

3. The ability to troubleshoot the operation of an electrical machine.

4. The ability to select a suitable measuring instrument for a given application.

5. The ability to estimate and correct deviations in measurements due to the influence of

the instrument and due to the accuracy of the instrument

7. BTEXC402 Analog Communication Engineering

Course Outcomes:

On completion of the course, students will be able to:

1. Understand and identify the fundamental concepts and various components of analog communication systems.

2. Understand the concepts of modulation and demodulation techniques.

3. Design circuits to generate modulated and demodulated wave.

4. Equip students with various issues related to analog communication such as modulation, demodulation, transmitters and receivers and noise performance.

5. Understand the concepts of modulation and demodulation techniques of angle modulation (frequency and phase).

6. Explain signal to noise ratio, noise figure and noise temperature for single and cascaded stages in a communication system.

7. Develop the ability to compare and contrast the strengths and weaknesses of various communication systems.

8. BTEXC403 Microprocessor

Course Outcomes:

1. Learner gains ability to apply knowledge of engineering in designing different case studies.

2. Students get ability to conduct experiments based on interfacing of devices to or interfacing to real world applications.

3. Students get ability to interface mechanical system to function in multidisciplinary system like in robotics, Automobiles.

4. Students can identify and formulate control and monitoring systems using microprocessors.

5. Students will design cost effective real time system to serve engineering solution for Global, social and economic context.

6. This course understanding will enforce students to acquire knowledge of recent trends like superscalar and pipelining and thus finds recognition of continuous updation.

7. Learn use of hardware and software tools.

8. Develop interfacing to real world devices.

9. BTEXC404 Signals and Systems

Course Outcomes:

On completion of the course, students will be able to:

1. Understand mathematical description and representation of continuous and discrete time signals and systems.

2. Develop input output relationship for linear shift invariant system and understand the convolution operator for continuous and discrete time system.

3. Understand and resolve the signals in frequency domain using Fourier series and Fourier transforms.

4. Understand the limitations of Fourier transform and need for Laplace transform and

develop the ability to analyze the system in s- domain.

5. Understand the basic concept of probability, random variables & random signals and develop the ability to find correlation, CDF, PDF and probability of a given event.

10. BTID405 Product Design Engineering

Course Outcomes: At the end of the course, students will be able to

- 1. Create simple mechanical or other designs
- 2. Create design documents for knowledge sharing
- 3. Manage own work to meet design requirements
- 4. Work effectively with colleagues.

11. BTBSC406 Numerical Methods and Computer Programming

Course Outcomes:

On completion of the course, students will be able to:

1. Able to solve algebraic and transcendental equations by using numerical techniques and will be able to compare different numerical techniques used for this purpose and also will be able to choose a proper one as per the requirement of the problem.

2. Able to solve a system of linear equations with any number of variables using different direct and iterative numerical techniques.

3. Understand the concept of interpolation, finite difference operators and their relations, and can apply different interpolation techniques on equi-spaced or non equi-spaced data values.

4. Prepare them to write computer programs for the numerical computational techniques.

5. Understand application of the NMCP course in many engineering core subjects like signal processing, digital communication, numerical techniques in electromagnetics etc.

6. Understand procedure-oriented and object oriented programming concepts.

7. Capable of writing C and C++ programs efficiently

TE (E&TC) Course Outcomes for all subjects

1. Power Electronics and Drives

Course Outcomes:

On completion of the course students will be able to

- 1. Understand various power devices, their firing circuits and communication.
- 2. Design $1\Phi \& 3\Phi$ power converters.
- 3. Study and design DC to AC converters.
- 4. Understand DC to DC control techniques.
- 5. Understand inverter and chopper based drive applications.

2. Digital Communication

On completion of the course, students will be able to:

1.To understand the building blocks of digital communication system.

2.To understand modulation techniques in digital communication.

3. To prepare mathematical background for communication signal analysis.

4.To understand and analyze the signal flow in a digital communication system.

3. Microprocessors and Microcontrollers

Course Outcomes:

At the end of the course, a student will be able to:

1. Assess and solve basic binary math operations using the microprocessor and explain the microprocessor's and Microcontroller's internal architecture and its operation within the area of manufacturing and performance.

2. Apply knowledge and demonstrate programming proficiency using the various addressing modes and data transfer instructions of the target microprocessor and microcontroller.

3. Compare accepted standards and guidelines to select appropriate Microprocessor (8085 & 8086) and Microcontroller to meet specified performance requirements.

4. Analyze assembly language programs; select appropriate assemble into machine a cross assembler utility of a microprocessor and microcontroller.

5. Design electrical circuitry to the Microprocessor I/O ports in order to interface the processor to external devices.

6. Evaluate assembly language programs and download the machine code that will provide solutions real world control problems.

4. Electromagnetic Engineering

Upon successful completion of this course it is expected that engineering graduates will be able to

- 1. Understand different laws, equations, rules of electric field intensity related to EME.
- 2. Understand and evaluate energy and potential in an electric field.
- 3. Understand conductors, dielectrics, and capacitance of a material.
- 4. Understand magnetics forces, materials and inductance while studying magnetistatics.
- 5. Analyze wave propagation in an uniform plane wave.

5. Feedback Control System

Upon successful completion of this course it is expected that engineering graduates will be able to

1. Understand and proficiently apply the relevant sciences and scientific methods to electronics engineering.

2. Identify, interpret and critically appraise current developments and advanced technologies and apply them to electronics engineering.

- 3. Develop and implement creative and innovative approaches to control system (h)
- 4. Understand and analyze to 1 storder and 2^{nd} order system in time domain general applications.

5. Determine analyses and proficiently apply theoretical and numerical analysis of phenomena to conceive, control and optimize the performance of control systems in engineering.

- 6. Show awareness of and ability to proficiently apply circuit project management tools and methodologies to the planning and execution of projects leading to the electronics engineering solutions of a professional standards.
- 7. Demonstrates the highest standards of personal performance
- 8. Demonstrate commitment to lifelong learning and professional development.

9. Understand the responsibilities of electronics engineers to the community' the engineering profession and industrial and business world.

10. Develop and implement creative and innovative approaches to problem solving.

6. Embedded System

Upon successful completion of this course it is expected that student will be able to have following outcomes

1. Design a system, component, or process to meet desired needs within realistic constraints such as economic, environmental, social, health and safety, manufacturability, and sustainability.

Design, test and critically evaluate embedded solutions to real world situations using (embedded) computer systems interfaced to digital hardware.
 Build circuits and program the microcontroller in the C programming language.

4. Synchronize hardware and software input/output with switches, lights and motors .

- 5. Implement an I/O driver and multi-threaded programming.
- 6. Deal with complex issues in embedded systems both systematically and creatively.
- 7. Make decisions in complex and unpredictable situations.
- 8. Work as a team leader to work on complex projects in a project team environment

7. Digital Signal Processing

At the end of course, Student will able to:

- 1. Compute various transform analysis of Linear Time Invariant System
- 2. Apply engineering problem solving strategies to DSP problems
- 3. Design and test signal processing algorithms for various applications.
- 4. Design and simulate digital filters.
- 5. Recover information from signals.

6. Understand various applications of DSP such as multi rate signal processing, telecommunication

8. Electronic Circuit Technology

At the end of the course, a student will be able to:

- 1. Develop an ability study and design different circuits
- 2. Understand different aspects of Op-amps circuit design
- 3.To measure different analog quantities
- 4. Understand different aspects and kinds of digital system design
- 5. Understand basic theory while designing circuit i.e. design considerations.

BE (E&TC) Course Outcomes for all subjects

1. Satellite Telecommunication (EL-II)

After Completing this course students will be able to:

- 1. Explain the basics of satellite communication
- 2. Explain and analyze link budget of satellite signal for proper communication
- 3. Use the system for the benefit of society
- 4. Use the different application of satellite communication

2. Microwave & Radar Engineering

After Completing this course students will be able to:

- 1. Understand basic concepts of microwave communication and transmission
- 2. Understand building blocks of microwave communication
- 3. Understand and design microwave generation techniques
- 4. Understand and learn fundamentals of Radar System.
- 5. Able to design impedance matching network for any transmission line or system.
- 6. Able to analyze and find applications and limitations of microwave tube Generators and Amplifiers.

3. Embedded System

Course Outcomes:

Upon successful completion of this course it is expected that student will be able to

1. Understand fundamentals of embedded systems, design paradigms, architectures, possibilities and challenges, both with respect to software and hardware.

2. Practically apply gained theoretical knowledge in order to design, analyze and implement embedded systems, e.g. integrating embedded su00bsystems and applications.

3. Analyze a system both as whole and in the included parts, to understand how these parts interact in the functionality and properties of the system.

4. Wireless Mobile Communication

Course Outcomes:

Upon successful completion of this course students are able to

- 1. Discuss the cellular system design and technical challenges.
- 2. Explain classification of mobile communication system.

- 3. Analyze the mobile radio propagation, diversity concepts, fading and channel modeling.
- 4. Develop ability to analyze improved data services in cellular communication.

5. Digital Image Processing

Course Outcomes:

After learning the course the students should be able to:

- 1. Understand the basic image enhancement techniques in spatial & frequency domains.
- 2.Understand the various kind of noise present in the image and how to restore the noisy image.
- 3.Understand the basic multiresolution techniques and segmentation methods.

4. Apply different image processing concepts for image handling in various fields.

5.Apply various compression standards studied, reducing the image size for optimizing storage and transmission bandwidth in their image processing related projects.

6. Work as a team leader to work on complex projects in a project team environment

6. Very Large Scale Integration

After successful completion of the course student will be able to:

1. Identify the various IC fabrication methods.

- 2.Differentiate various FPGA architectures and CPLD architecture.
- 3.Design an application using Vhdl
- 4. Concepts of modelling a digital system using Hardware Description Language.
- 5.Demonstrate a clear understanding of CMOS fabrication flow and technology scaling.
- 6.Assess the various reliability issues in VLSI technology

7. Optical Fibre Communication

After completion of the course, the student is able to

1. Distinguish Step Index, Graded index fibers and compute modevolume.

2.Explain the Transmission Characteristics of fiber and Manufacturing techniques of fiber/cable.3.Understand basic laws of optical physics. Distinguish between the various modes of operation

of Optical fibers. Identify the various causes for signal degradation.

4.Predict the pulse broadening happening due to the effect of dispersion of the signal.

Classify the construction and characteristics of optical sources and detectors.

5.Discuss splicing techniques, passive optical components and explainn oise in optical system.

8. Consumer Electronics

At the end of the course, the student will be able to

1. List technical specification of electronics Audio system (microphone and speaker).

- 2. Trouble shoots consumer electronics products like TV, washing machine and AC.
- 3. Identify and explain working of various colour TV transmission blocks.
- 4. Understand various functions of various devices related to telecommunication system.
- 5. Understand the basic functions of various consumer electronic goods.

9. Computer Communication Network

Course Outcomes:

At the end of the course, the student will be able to

- 1. Able to know basic concepts of computer, computer communication and use of it in networking.
- 2. Able to know basics of Networking with different switching techniques.
- 3. Study of Networking topologies: Mesh and Bus toplogy, Star topology & ring Topology.
- 4. Network Software : device driver for network interface card, LAN, MAN, WAN.
- 5. Overview of Network model: ISO-OSI and TCP/IP network reference Model.

10. Applied Digital Signal Processing (ADSP)

Course Outcomes:

At the end of the course, the student will be able to

- 1. Able to know different digital signal, filter techniques and it's algorithms.
- 2. Able to know multirate signal processing like interpolation and Decimation.
- 3. To enhance the knowledge of polyphase filter structures and two channel quadrature Mirror filter bank.
- 4. Need of Adaptive filter, its main components and its algorithms.
- 5. Able to design Lattice structures AR, MA & amp; ARMA.
- 6. Able to represent & amp; calculate the characterization of random signals.
- 7. Ability to estimate autocorrelation and power spectrum of random signals (Bartlett Window & amp; Welch Method)
- 8. Ability to know different architecture of DSPs and floating & amp; fixed point representations.
- 9. Case study of TMS320C54XX and introduction of SHARRC processor.
- 10. Applications of DSP (Ex. Biomedical, Audio-Video systems, Radar System etc.)

People's Education Society's (Mumbai)

P.E.S. College of Engineering, Nagsenvana, Aurangabad 431002

	2,6.2	- Pass percentage of:	students 2018-	19	
Programme Code	Programme Name	Programme Specialization	Number of students appeared in the final year examination	Number of students passed in final semester/year examination	Pass Percentag e
213461210	BE	Mechanical Engineering	104	74	71.15
213429310	BE	Electrical Electronics and Power	112	87	77.65
213437210	BE	Electronics and Telecommunication	17	14	82
213424210	BE	Computer Science and Engineering	61	41	67.21
213419110	BE	Civil Engineering	66	37	56.06

Result Analysis

Dr..B.A.T.U., Lonere

M.Tech (CSE) May/June 2019 Part-II

SR.	Subject	Total	Appeared	Pass	Fail	Passing %
01	DS	04	03	02	01	66%
02	SA	04	03	03	00	100
03	ST	04	03	03	00	100
04	мс	04	03	03	00	100
05	PR	04	03	02	01	66%
06	Seminar -1	04	03	03	00	100
07	SL-II	04	03	03	00	100

Result Analysis

Dr.,B.A.T.U., Lonere

M.Tech (CSE) Nov/Dec 2018 Part-1

SR. NO	PRN	NAME OF STUDENTS	CS	CA	ML.	ACN	EF4: NLP	EL-II: HPC	SL-I	Credit
01	2021342018(22421000)	ZINJURDE ASHWINI MACHNDRA	Pass	Pass	Pass	Pass	Pass	Pass	Pass	22/22
02	20213420181224210002	SHAIKH FATIMA	Pass	Pass	Pass	Pass	Pass	Pass	Pass	22/22
113	20217420181224210003	JAWALE PILESH DHANRAJ	Pass	Pass	Fail	Pass.	Fail	Pass.	Pass	15/22
04	20213420181234219995	BANSODE PRATIKA	Fail	Fail	Fail	Fail	Fail	Fait	Fail	0:22
05	20313430181224210006	DANDGE ANJALI	Pass	Pass	Pass	Pass	Pass	Pass	Pass	22/22
-		NAME OF SUBJECT TEACHER	VRM	SNK.	V10	VBK	VAL.	MMA	VSP	

People's Education Society's(Mumbai) P. E. S. College of Engineering, Nagsenvana Aurangabad Department of Computer Science & Engineering Result Analysis M/J-2018-2019

CLASS : BE (CSE)

Subjectwise Analysis

Sr. No.	Subject	≥66	60-65	40-59	Fail	Absent	Appeared	Total	%Result	Subject Teacher
1	DWDM	5	5	44	7	0	61	61	88.5245	VBK & ВМК)-
2	PDC	3	6.	44	8	.0	61	61	86.88525	SVB
3	PCD	4	4	41	12	0	61	61	80.32787	ASG
4	VM	3	5	41	12	0	61	61	80.32787	NSS
5	CC	1	3	44	13	0	61	61	78.68852	DTR
6	CSSL	10	10	31	10	0	61	61	83.60656	YSP
7	MOC	16	7	33	5	0	61	61	91.80328	SMS
8	SC	13	16	26	6	0	61	61	90.16393	SNK&RHJ
1 9	GIT	21	13	23	4	0	61	61	93.44262	VBK&SDP

Overall Result

Class	Distinction	First Class	Secon d Class	Fail	Absent	Total	Passing Percentage
BE	24	14	3	20	0	61	67.21

BE CSE Topper

No	Name	Percentage
1	Dalvi Arti Dattatraya	79.8
2	Nirpal Vishakha Janardan	75.87
3	Singh Neha Chetram	74.07

Head CRE

DR. Babasaheb Ambedkar Technological University, Lonere P.E.S. College of Engineering Aurangabad SY Btech Computer Science Summer Semester Exam 2019 Result Analysis

Sr No	Subject	Pass	Fail	Appear	Paasing Percentage	Subject Teacher
STINO	Subject	E.A.	20	83	65.06024096	Prof. V. D. Jadhav
1	DAA	54	29	0.00	61 44578313	Prof. S. R. Aacharya
2	P&S	51	32	83	01.44570515	Prof. K.R. Dabade &
1	05	. 68	15	83	81.92771084	Prof. G. R. Goud
1 3	03				PA 2373494	Prof. S. V. Bhosale
1	OOP	70	13	83	84.3373434	Prof. V. R. Mote
4	SSPD	78	5	83	93,97590361	I I I I I I I I I I I I I I I I I I I

	Total Rest	alt	
	1 n moted	Not Promoted	Percentage
Class	Students Appeared Promoted	26	68.67
Class	Students Appeared Fromoteo	26	68.67

Head CSE

People's Education Society's(Mumbai)

P. E. S. Colle e of Engineering, Nagsenvana Aurangabad

Department of Computer Engineering

Result Analysis M/J 2019 FIFTH & SIXTH SEM

ASS	÷T.E		Sub	icctwise	t Analys	is.								
.No.	Subject	A++	A+	A	B+	B	C+	c	Fail /	bsent	Appeared	Total	Percentage	Subject Teacher
1	OS	0	1	5	4	5	1	7	7	0	30	30	76.6666667	Prof. S. N. Kakarwal & Prof. S. D. Pingle
2	TOC	0	0	0	1	.5	4	10	10	0 .	30	30	65.6666667	Prof. G. R. Goud
3	DBMS	0	0	5	6	5	5	4	5	0	30	30	83.3333333	Prof. S. M. Salve
4	PIJ	0	2	8	3	6	1	4	6	0	30	30	80	Prof. A. U. Jadhay
	DIP	0	0	2	1)	- 4	7	2	0	19	19	89.4736842	Prof. Y. S. Pagar
-0	LNAP	0	0	2	0	2	0	4	3	0	11	11	72.7272727	Prof. N. R. Khatri
	AJ CE	0	1 2	9	6	1	2	5	3	2	28	30	89.2857143	Prof. B. M. Kulkarni
- 0	DAA	0	1 5	8	6	3	1	2	3	2	28	30	89.2857143	Prof. N. S. Sved
10	NC	0	0		1 3	7	5	3	7	2	28	30	75	Prof. N. R. Khatei
11	SP	0	3	+ *	1	2	8	5	8	2	28	30	71.4285714	Prof. D. T. Rathod
		1 0	1.4	1 0	1 0	1.5	0	4	4	2	28	30	85.7142857	Prof. A. S. Gadebas
Clase	6 8	A+	A	8+	в	c	Total PASS	FA	ткт	TOTAL.	Passing %	-		5 6
T.E.	· · · · · · · · · · · · · · · · · · ·	3	7	6	1	1	18		12	30	60.00	1		
	TE C	SE To	opper :	5th Se	m	- 10		1.11		1000	TI	CSE	Topper 6th	1993 C.C.
No		1	Name.		SGP	A				No	1	Nan	ropper orn	Sem
-1	Chava	in Ash	vini		7.96					1	Sheiwall	Paoia		SGPA
2	Barab	ote Ko	mal		7.73					2	Hiwrale	Nisha		8.58
3	Meng	nar Di	vyani		7.62					3	Chavan	Ashvini		8.54
										4	Shaikh /	ksha		8.31
			On	erall I	least !!	EIFTI	SEM							8.31
Cha		A+	1	B	+ Tot	al F	al ND	Tota	Passing	7				Ordered
T.:	E	7	1 3		2 1 1	5	5 9	30	76.190	5				Detran T

ND* Not Declared due to 2nd Year Back

Head CEF

DR. Babasaheb Ambedkar Technological University, Lonere P.E.S. College of Engineering Aurangabad SY Btech Computer Science Winter Semester Exam 2018 Result Analysis

S. N				Acsult Al	latysts	
SFNO	Subject	Pass	Fail	Appear	Paasing Percentage	Subject Teacher
1	EM-III	31	52	83	37.34939759	Prof. S. P. Active
4	DMS	43	40	83	51.80722892	Ped. R. H. Jadhav
3	DS	73	10	83	87.95180723	Prot. V. D. Jashhado
4	CA&O	58	25	83	69.87951807	Prof. K. E. Ghuge
5	DEMP	71	12	83	85.54216867	Prof. P. R. Children

	List of Toppers	SGPA
sr No.	Wante	8.01
1	Shettigar Hemant	0.70
2	Khizar Ahmed Biyabani	8.78
3	Talele Pratik	8.61

Mend, CSE

PES College of Engineering, Nagsenvana, Aurangabad Department of Civil Engineering BE CIVIL STUDENT SUBJECT WISE AVG. ,

01

.

MAY/JUNE 2019

.

SRIND		SUBJECT	NAME OF THE SUBJECT TEACHER	266	60-65	40-59	FABL	ARGENT	TOTAL AT	america
	*	EE II	PROF.P.D.ALTE		-				TOTAL AF	ANRSOLT
	2	WRE II	PROF FATIMA		1	50	14	0	66	78.78
	3	DOS III	PROF SHOEB ILIVAS	-	9	44	6	1	56	90.9
	4	FE	PROF 5.8.DHIRF	-	7	51	2	0	66	93.93
	ELECTIVE I	PC	PROF.R.D. PANOIT		9	36	12	0	66	81.81
	6 H	TP	PROF S & DHULF	1 1	3	28	5	D	39	87.17
	7	SM	PROF R D PANDIT		1	14	1	0	25	96
1	8	CM	PROF NASIM AHMED	3	7	40	14	0	66	78.78
1	3	pp	PROF.C. R. GHUSHINGE	13	9	37	7	0	66	89.39
		AS	PROF PANDIT	49	13	44	6	0	66	92.42
10	ELECTIVE	PD	PROF.S.B. DHULE	1.0	. 4	31	6	0	53	88.67
11	u	IWT	SELF PREPARED		U	- 7	3	1		63.63
		I	Terstopeni	0	0	1	1	0	2	50
lass	Distinction	First Div	Second Div	Failed	ATKT	Absent	Total Appre	ad	Pass ?	6= 56
0.01							and the second states of			
udent	27	7	3	30	Nil	Nč	66	5		
ercentage	40.9	10.66	4.54	45.45	0	a	10	0		

CLASS TEACHER BE CIVIL ENGG

HOD ENH CIVIL ENGG DEPT

PRINCIPAL

٠

PESCOE AURANGABAD

FINAL YEAR EEP

Subject	Nam		PAR	T-1& PA	RT-II	2018-1	9	
	The Staff	Class	0-36	37-40	41-60	61-65	66 &	Percentage
ED	AMP	-		1			Above	
	SVM	A	3.63	1.8	72.72	10.9	10.9	94.57
PSP	BNC AND	В	5.26	1.71	75.43	1.4	3	93.4
	BNC, AVG	A	1.8	1.8	72 72	14.54	9.0	96.4
DSP	DINC, KKB	В	5.26	0	59.64	28.07	7	94 74
	AAT	A	1.8	0	01.0	7.2	0.0	98.7
10	ASP,NDK	В	5.26	17	66.666	1754	0.7	96.14
IA	APP, RUM	A	0	1./	60.000	17.54	10.7	100
	APP, AHY	в	35	0	67.27	10.30	10:50	100
FACTS	SSK, AMP	A	0	10	55.55	17.54	45.61	90.5
	SSK, MIW	B	35	1.8	58.18	14.54	25.45	98.2
HVE	VKP	Δ.	3.5	0	24.56	22.80	49.12	96.5
	AMP VKP	0	9.09	5.45	69.2	10.9	5.45	85.46
PSOC	DNC AUC	D	5.26	0	61,40	19.29	14.03	94.74
1300	DINC, AVG	A	25.45	9.09	58.18	1.8	5.45	65.46
	BNC, AVG	8	5.26	5.26	66.66	8.7	14.03	94.74
RE	AMP	A	0	0	67.27	9.09	25.45	100
	ККВ	В	3.50	0	24.56	26.31	45.61	96.5
ESPD	SSK, PPF	Α	3.63	0	25.45	14.54	56.9	96.4
	SSK. MIV	V B	5.26	0	5.26	7.01	82.45	94.74
Total	appeared=11	2	Total	passed=8	7 Fail=25	Pass %		77.65%

HOD (EEP)

Sheets	-				
CONTRACTOR	50		-	1.4	
	C11	-	-67		

PES College of Engineering , Aurangabod Electrical Department

- 1	M	10.	-1	.1	1	De	v
- 1	1	10		11	٤.	1	è,

Subiene	12020	-	Part	-1	stores trelint	Iment		
lect	Fail	E&D	C.		And	Year 18-1	9	
PSM	3	15		.0	ABOVE	Total	Passing	Staff
RES	0		2	3	0	oradent	%	
APE	4	1	5	1	0	13	77	3354C
HUDT	3	8	0	0	0	13	100	\$5K
DO	1	5	6	1	0	13	62	SVM
PQA	3	6	1		0	13	92	SMK
			3	1	0	13	77	MSP

Subject		-	Part	-11	-	Year 18-1	9	
Subject	Fail	E&D	C	8	A and	Total	Passing	0000000
PSDC	0	6			ABOVE	Student	%	Staff
ASP	0	6	4	3	0	13	100	SSK
SGDA	0	10	1	6	0	13	100	BNC
M&SPF	0	12	1	0	0	13	100	SMK
FM&A	0	3	5	2	1	13	100	SVM
CONC.A	0	6	5	2	0	13	100	MSP

A-001	_		Part-	ш	Year 19-20						
Subject	Fail	E&D	с	B	A and ABOVE	Total Student	Passing %	Staff			
PM	0	0	0	6	4	10	100	SSK			
PROJ STAGE -I	0	1	0	0	9	10	100	ALL GUIDE			

			Part	-IV		Year 19-20				
Subject	Fail	E&D	с	в	A and ABOVE	Total Student	Passing %	Staff		
PROJ STAGE -I	0	0	0	2	0	2	100	ALL GUIDE		

		Part	-1		Year 19-2	0	
Fail	E&D	с	в	A and ABOVE	Total Student	Passing %	Staff
3	8	5	1	0	17	82	BNC
0	9	6	0	0	17	100	SSK.
3	7	6	1	0	17	82	SVM
5	7	4	0	0	17	71	SMK
3	9	6	0	0	17	82	MSP
	Fail 3 0 3 5	Fail E&D 3 8 0 9 3 7 5 7 3 9	Fail E&D C 3 8 5 0 9 6 3 7 6 5 7 4 3 9 6	Fail E&D C B 3 8 5 1 0 9 6 0 3 7 6 1 5 7 4 0 3 9 6 0	Part-I Fail E&D C B A and ABOVE 3 8 5 1 0 0 9 6 0 0 3 7 6 1 0 5 7 4 0 0 3 9 6 0 0	Part-I Year 19-2/ Fail E&D C B A and ABOVE Total Student 3 8 5 1 0 17 0 9 6 0 0 17 3 7 6 1 0 17 5 7 4 0 0 17 3 9 6 0 0 17	Fail E&D C B A and ABOVE Total Student Passing % 3 8 5 1 0 17 82 0 9 6 0 0 17 100 3 7 6 1 0 17 82 5 7 4 0 0 17 71 3 9 6 0 0 17 82

			Part	-11		Year 19-2	0	
Subject	Fail	E&D	с	в	A and ABOVE	Total Student	Passing %	Staff
-	4	8	2	0	0	14	72	SSK
PSDC	4	1	2	0	0	14	72	BNC
ASP	2	9	3	0	0	14	86	SMK
SGDA	4	7	2	1	0	14	72	SVM
M&SPE	4	6	6	1	0	14	86	MSP
EM&A	2	3					1	mor

٠ KHOD V J 7 Electrical

Page 1

P.E.S COLLEGE OF ENGINEERING ELECTRONICS AND TELECOMMUNICATION

8.E RESULT ANALYSIS 2018-19

Sr.No.	Seat No.	Name of Student	NTK	MRR	APK	VVK	55	ж	NTK	APK	AP	ĸ	SSK
0.0000		rationes and the set	DIP	E.5	VLSID	M&R	E WN	1C	CCN	OFC	CE	5/	AT COMM
1	428040013	Argade Sheetal	58	44	58	39	54	1	44	47	55		37
2	428040037	Bhamare Prashant	46	52	43	42	42	1	49	56	41	1	45
3	428040052	Borde Gangotri	51	45	68	60	73	1	52	78	57	1	61
4	428040065	Chavan Ganesh	66	78	62	59	61	6	7	70	61	1	5.6
5	428040196	Khade Priti	53	73	47	60	62	1 6	. 1	74	66	1	- 1
6	428040209	Kondke Vishal	45	60	55	45	64	1 45		1	50	+	02
7	428040212	Kshirsagar Shivani	-44	59	45	57	57	40		- 1	34	-	0
8	428040260	Mhaske Dipali	48	63	67	57	54	54	1	. 1	53	4	
9	428040299	Pandhare Sunil	45	51	42	45	54	57	1 .	. /	61	48	-
10	428040317	Patil Sukanya	57	59	60	62	53	62	1	1	02	46	-
11	428040343	Raut Sneha	57	61	48	61	50	60	1 03	-	10 1	.58	
12	428040346	Rokade Shubhangi	45	47	69	54	48	56	60	1	49	63	-1
13	428040351	Sakhale Ajay	56	12	47	36	46	42	21		52	64	1
14	428040368	Shendge Ramesh	44	45	42	50	55	47	62		13	40	Fait
15	428040377	Shoeb Ali	52	29	42	29	40	50	50	1		51	-
16	428040410	Thorat Pravin	57	44	48	43	60	65	56	1	0	30	Fall
17	428040435	Wakode Supriya	46	65	47	50	44	67	53	0		48	1
-			100%	89%	100%	82%	100%	100%	94%	100	14. 4	5.3	1

Total students in class = 17 Total passed students = 14 Total Pass percentage = 82%

Reception

P.E.S. COLLEGE OF ENGINEERING

1. Aug 6 14

	Contract Bar	0	-24	21	5-27	1-		1000	1994 Stranger					
		140 11	Sage .	the st	1	21	1-47		15.85		100			
		arrived.		plante cas	- ate	April of	1 Apr	14. 10	-	Abstand	- Title	ri Pasa	Cotest Amount	ctim
	+CE.	'	7.88	12	$\mathcal{T}(u)$	105		22124-0	1		20	140		1.5
	ACS	U	15.09	0	0.00	-	-		18	A sig.	11	10.47	CH IT IS ADDRESS	
	MOC	2	1.77	-		.50	26.61	14	26.42	1.00	-	100		
			3.17	0	0.00	75	90.04	15	-		1	#3.02	312	
	TURBO	7	15.21	e	0.00			-	- 40 .10	4.00	- 95	91.34	62	
	PPE	6	11.32	-			77.00		7.55	1.00	41	54.91		-
	1			-	n an	221								
	AE	4	7.55	0	0.00	43	81.11	1	-					
	PMOR	12	24 53	0	0.00	-		-	9.43	1.00	1	M.5/		
	RAC			_	0.00	20	54.72	Ye.	18.87	110		11.68	1	
			17.40		$\left b_{1}^{2} + b_{2}^{2} \right = 1$	à.	60.3m	40	-			2022		
	IE	з	5.66	α.	0.00			-		1.02		90.57		
						-	54.72	20	27.74	1.00	49	92.45	52	
Sr.	Rest in a	Result in	_											
NO.	subject	%	N/	AME OF	STAFE		-		- 1					
-	ICE	90.57	Pre	of MITS	Day Inc.									
1	ACS	83.02	1	hol'll it	Citoro		1.44						-	
4	MUC	94.34	p	TOTSSS	house				1 2 2	121-22			Over all a	Revealt & - 8
-	TURBO	84.91	Po	of A A I	Inshen		1.01	BR	111				1.10.10.001	14
-	PPE	86.79	Pr	OF A A	Streets							10	(interior	
	AE	90.57	Pro	MITS	history	-	126				•			
	PMOR	73.58	Pi Pi	11556	hinde								Cherrory, C. S.	** 15,68 Jul 1
-	RAC	90.57	Phe	TAAL	Lordana.									
10	Æ	92.45	10	01.01.1										
	u	0.00					1.1		目居					

NEAD OF DEPASTMENT mahanal 1 providence

P.E.S. COLLEGE OF ENGINEERING

Runge	0.	24	25	27	28	-47	Total No	rdaer of Mark	Sizes control				
1	No of students	%age	No. of	N.100		-	4	8-80	Absort	- M	Atta Anti T	NOT BECATTLE	
-	-		students		Nn of stadents	1-4pt	No el	-		Tob	d Pats	Intel Approximate	CT-1
ICE	2	3.92	0	0.00	41	80,30	studeres			Film of etc-tasies	Siege	in	
AC5	6	11 76	0	0.00	78	-	-	13.73	1.90	49	94.12	in a threads	
MOC	z	3.92	0			94,99	18	29r43	200	4	34.3)		
			_	0.00	41	50.40	1	11.72	14.	AL			
UNDEC.		11 70		1.94	35	74.50	5	5.00		-			20
PPE	3	5.65	÷	0.00	43	84.31			1.00	43	84.31	- 55	0
AE	2	3.92	0	0.00	-		-	5.88	2 00	46	90.20	477	
			-	0.00	41	80.39	6	11.76	2.00	47	92.16	49	0
MUK	15	29.41	0	0.00	31	60 78	4	7.84	1.00	35	68.63	50	
RAC	7	13 73	٥	0.00	35	68 63	8	15.60	1.00	43	84.11	60	
IE	1	1.96	0	0.00	34	66.67	15	29.41	100			~	.*
				-							an (58	-	.8

Sr. No	subject	Result in %	NAME OF STAFF
1	ICE	94 12	Prof. Constant.
2	ACS	84.31	Prof & M Bassidar
3	MQC	94.12	Prot 9.1 Candit
4	IURBO	84 31	Print A A Hushimi
5	PPE	90.20	Prof S S Sherole
6	AE	92.16	Prof. V. V. Diete
7	PMOR	68.63	Prof. Y.S.Sable and Prof. G Nauk
8	RAC	84.31	Prof. R.G. Pungle
9	IE	96.08	Prof. P.L. Pandit
10	0	0.00	

....

100

HEAD OF OFPARIMENT Reclament to get own

		1811		Res	Analys	in of BE	A- 201	8-19 Nor of Mark S	liverta evellebia	-11 84	ANDRESS	NOT RECIVED-	
Range	0-1	14	25	27	28	47	41	-80	Absent	Tota	Pass	Total Appeared	GT<12
(man	H0.04	-	No of	-	No. of Bulletts	-	No. of students	-		No. of students	-	No. of students	
ICE	2	3.92	0	0.00	41	80.39	7	13.73	1.00	45	94.12	50	0
ACS	6	11.76	0	0.00	28	54.90	15	29.41	2.00	43	84.31	49	0
MQC	2	3.92	0	0.00	41	60.39	7	13.73	1.00	48	94.12	50	0
TURBO	6	11.76	1	1.96	38	74.51	5	9.80	1.00	43	84.31	50	•
PPE	3	5.68	0	0.00	43	84.31	э	5.85	2,00	45	90.20	49	0
AE	2	3.92	0	0.00	41	80.39	6	11.78	2.00	47 1	R2.16	49	•
PMOR	55	22,41	٥	0.00	31	60.78	4	7.84	1.00	35 6	8.63	50	0
RAC	7	13.73	0	0.00	35	68.63	8	15.69	t 00	43 8	4.31	50	0
10	1	1.96	0	0.00	34	66.67	15	29.41	1.00	49 9	8.08	50	0

Sr. No.	subject	Result in %	NAME OF STAFF
1	ICE.	94.12	Prof. G.G.Naik
2	ACS	84.31	Prof.A.M.Bawiskar
3	MQC	94.12	Prof.P.L.Pasdit
4	TURBO	84.31	Prof. A.A.Haihmi
5	PPE	90,20	Prof. S.S.Shirole
6	AE	92.16	Prof. V.V.Thete
7	PMOR	68.63	Prof. V.S. Sable and Prof.G.G. Noils
	RAC	84.31	Prof. R.G.Pungle
	IC .	96.08	Prof. P.I. Pandit

Mec Cal Engineering verse

Return	Analysis	of BE- B-	2018-19	
		Testal.	income and black	Manager and

Subject : Al Debjech							what Westight	mr of Mark 5	finein evallable	- 63 MA	PR SHEET	HOT RECIVED.		s
Range	0-	24	25	27	28-	47	48	-00	Absent	Total	Pass	Total Appeared	GT<12	
august I	-	*	No. of	ł	No. of muderes	-	-	-		No. of	-	-		
ICE	4	7.55	0	0.00	42	79.25	6	11.32	1.00	48	90.57	52	0	
ACS	5	15.09	0	0.00	30	56 60	14	26.42	1.00	44	83.02	52	0	
MQC	2	377	0	0.00	35	66.04	15	28.30	1.00	50	94.34	52	9	
TURBO	2	13.21	0	0.00	41	77.36	4	7.55	1.00	45	84.91	52	•	1
PPE	6	11.32	0	0.00	37	59.81	9	16.98	1.00	45	86.79	82	a	
AE		7.55	0	0.00	43	81.15	5	9.43	1 00	48	60.57	52	9	ļ
PMOR	15	24.53	0	0.00	29	54.72	10	18.87	1.00	29	73.58	18	0	
RAC	4	7.55	0	0.00	32	60.38	16	30,19	1.00	-40	90.57	12	8	
iE	8	5.06	Ó	0.00	29	54.72	20	37.74	1 00	49	92.45	4	3	

Sr	sutgect	Result in	NAME OF STAFF
	ICE	90.67	Prof. M.T. Shidajin
1	ACS	83.02	Prof.H.R.Ghan
11	MQC	\$4.34	Prof 5 5 Sharole
1	TURBO	64.91	Prof. A.A. Hiohmi
	PPE	86.79	Prof. A.A.Canali
t.	AE	90.57	Prof. M. J. Shidigui
	PMOR	73.58	Prof 5 5 Shinole
1	RAC	90 67	Prof. A.A.Hashmi
+	iF	92.45	Prof. P.1. Panist

HEAD OF DEPARTMEND Mechanical Inspections (1), college at Engineering International

a

形に使い

Revult Analysis or in-m - zonormon symposity #	b'E'ou
Sem-5th	

Rang	2 0	0		2	6				Absent	Total	Pass	Total Appeared
Subject	No. of students	%age	No of students	Nape	No. of students	Nage	No. of students	Sage		No. of students	Nage	No. of studient
DME-1	16	47.06	15	44.12	1	2.94	2	5.88	0.00	18	52.94	34
META	13	38.24	18	52.94	3	8.82	0	0.00	0.00	21	61.76	34
FMM	18	52.94	15	44.12	1	2.94	0	0.00	0.00	16	47.06	34
том-и	28	82:35	6	17.65	0	0.00	0	0.00	0.00	6	17.65	34
MMT	8	23.53	22	64.71	4	11.76	0	0.00	0.00	25	76.47	34

Sr. No.	subject.	Result in	Name of Staff
1	DME-1	52.94	Prof. Sable Y. S.
	META	61.76	Prof. Pungle R. G.
	FMM	47.06	Prof. Ali F. M.
-	TOM-II	17.65	Prof. Baisane V. P.
5	MMT	76,47	Prof. Shejwal V. D.

HER OF TOTAL MUST

1

Result An. als of TE -B -2018-19 CGPA Sem 6th

Bulgett : Af	Jubjec	15				-		-		Total	Number of	Mark Shee	th southstate and
R	enge		D	1	c	1	8		A	Absent	Tota	Pass	Total Appeared
Butinet	1	No. of shudents	Kape	No. of students	Nage	No. of students	%age	No. of students	%age		No. of students	Nage	No. of studen
DME-II		24	70.59	5	14.71	0	0.00	5	14,71	0.00	10	29.41	34
нт		25	73.53	6	17.65	2	5.88	1	2.94	0.00	9	26.47	34
TE		19	55.88	11	32.35	3	8.82	1	2.94	0.00	15	44.12	34
CAD/CA	4	13	38 24	12	35.29	7	20.59	2	5.88	0.00	21	61.76	34
IHP		12	35.29	13	38.24	5	14.71	4	11.76	0.00	22	64.71	34

14

Sr. No.	subject	Result in %	Name of Staff
1	DME-II	29.41	Prof. Sable Y. S.
2	HT	26.47	Prof. All F. M.
3	TE	44.12	Prof. Tondchirkar M. G.
4	CAD/CAM	61.76	Prof. Shirsat R. L.
5	IHP	64.71	Prof. Ghan H. R.

24

HEAD OF DEPARTMENT Mechanical Engineering PES College of Engineering Aurangobaid

DR. Babasaheb Ambedkar Technological University, Lonere P.E.S. College of Engineering Aurangabad SY B-Tech Mechanical Engineering Summer Semester Exam 2019 Result Analysis

						Teacher
	Cublect	Pass	Fail	Appear	Paasing Percentage	Prof. H.R.Ghan &
r No	Subject	04	32	116	72.41	Prof.A.A.Gawali
1	MP-1	84	24	1	86.21	Prof. A.M.Bawiskan
2	TOM-1	100	16	116	80.21	Prof. V.P. Dansh
_		12	63	116	45.69	Prof. A.R.Narwade
3	SOM	53	0.5		i la contra c	Prof. G.P.Kamble &
-	NMME	57	59	116	49.14	Prof. S.N.Admanka
4	Televitere.			116	100.00	Prof. S.S. Shirole
5	PDE	116	0	110		Prof. R.L.Sirsat &
1	ICSSDE	113	3	116	97.41	Prof. M.N.Aves

The second s	Doould
1 0191	Result
1 0 1 1 1 1	W. W. W. W. W. W.

Students Appeared 11	ge	Percentage	Not Promoted	Promoted	to to Appeared	
Class 01000 116 71 45 61.206896	55	61.20689655	45	71	Students Appeared	Class

HEAD OF DEPARTMENT Mechanical Engineering PES College of Engineering Aurangabod

People Education Society's (Mumbai) P. E. S. College of Engineering, Aurangabad Department of Computer Science & Engineering Program outcomes, program specific outcomes

PROGRAM OUTCOMES

After completing four year graduate course of BE (CSF) the students will be able to:

- Understand and proficiently apply the knowledge of mathematics, relevant sciences to CSE, to design software solutions to the given problems.
- An ability to design software & conduct their software simulations and testing to analyze and interpret the results produced and verify their online performance.
- Will be able to design a software automation system for various application areas using
 efficient algorithms, the computer resources and components, to meet desired needs within
 realistic constraints such as economic, environmental, social, political, ethical, health and
 safety, manufacturing, and sustainability.
- Will be able to Design software projects for multidisciplinary applications areas and will be able to maintain it on field.
- An ability to identify, formulate the problem definitions for which the software solution can be designed and will be able to implement them.
- Will be able to demonstrate commitment by developing professional softwares for various applications as per ethical standards and rules led by society.
- Will be able to communicate with the corporate world effectively by implementing techniques for verbal and nonverbal communication skills taught in syllabus.
- The computer Graduate will be able to understand impact of software solutions in a global economic, environmental and social context.
- Will be able to design software solutions using recent algorithms and also continuously modify them as per the current needs of the society through lifelong learning and professional development.
- Will be able to demonstrate knowledge of contemporary issues.
- Show awareness of and ability to proficiently identify and apply project management tools and methodologies to the planning and execution of software projects leading to software.
- Will be able to plan and use computer resources and other systems efficiently.

P.E.S. 0 Engineering

Program Specific Outcomes

The Program Specific outcomes UG in CSE are:

After completing four year graduate course of BE (CSE) the student will be able to:

- Understand and proficiently apply the knowledge of mathematics and relevant sciences and scientific methods to CSE, to design software solutions to given problems.
- An ability to analyze the problem and identify & formulate the hardware, software, other computing requirements to design software solution for it.
- 3) Will be able to design a software automation system for various application areas using efficient algorithms, the computer resources and components, to most desired needs within realistic constraints such as economic, environmental, social, political, ethical, health and safety, menufacturing, and sustainability.
- Will be able to Design software projects for multidisciplinary application areas and will be able to maintain it on field.
- Mudern Tool usage: An ability to select, modern software tools, apply appropriate software development methodologies, resources necessary for computing.
- 6) The engineer and the Society: The engineer will be able to apply the reasoning about local and global impact of software solutions for problems using contextual knowledge to assess societal, health, safety, logal and cultural issues.
- Environment and sustainability: Understand the impact of software solutions and the need of sustainable development to save environment.
- Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of software engineering practice.
- Individual and team work: Will be able to function effectively as software engineer and also member or a leader of a software development team and also work on multidisciplinary projects.
- 10) Will be able to communicate effectively on complex engineering activities with the engineering community and with the society at large such as being able to comprehend and to writs effective reports and design documentation make effective presentations and give and receive clear instructions.
- Project management and finance: Demonstrate knowledge and understanding of the engineering and management principles apply those to one's own work as a member and leader in a team to manage projects in multidisciplinary teams.
- 12) Recognize the need for and have the preparation and ability us engage in lifelong learning in the broadcast context of technical change.

P.E.S, C ae of Engineering Aurangabad

PES College of Engineering, Aurangabad.

Department of Electronics & Telecommunication Engineering

Program educational objectives

- Graduates will able to succeed in positions in engineering practice or research, and in other fields they choose to pursue.
- 2. Graduates will become a responsible member of society.
- Graduates will be leaders, both in their chosen profession and in other activities.
- Graduates will address the complexities of real life engineering problems and be able to formulate solutions that are technically sound, economically feasible & sustainable.

PROGRAM OUTCOMES

Upon successful completion of this course it is expected that electronics graduate will be able to:

- a. Understand and proficiently apply the relevant sciences & scientific methods to Electronics engineering to design solutions to complex problems in electronics systems, electronic circuits & control processes,
- b. Identify, interpret & critically appraise current developments, advanced technologies and apply them to electronic engineering field to enhance reliability and efficiency of electronics based systems, components and programs.
- c. Identify and synthesize the constraints posed by commit factors, safety considerations, environmental impacts and professional standards on Electronics engineering practices and use them for professional judgments in solving the critical field problems for sustainable technological development of nation.
- Determine, analyze and proficiently apply theoretical and numerical analysis of Phenomenon to

conceive, control & optimize the performance of Electronics engineering systems used for different applications such as in navigation, automobiles, transportation, and automation.

c. Identify and critically evaluate the performance of a electronics engineering systems in terms of economics, safety, and social and physical environment and implement approaches to minimize any adverse impact leading to sustainable development of society.

P.G.S. Cel. noneerina

- f. Understand and proficiently apply a systems approach for electronics system design and addressing the broad contextual constraints, leading to sustainable developments of global level electronics technologies and standards.
- g. Show awareness and ability to proficiently apply project management tools and methodologies to the planning and execution of projects leading to electronics engineering solutions of professional standards.
- h. Develop & implement creative and innovative approaches to enhance the reliability, efficiency and commical aspect of electronics systems for sustainable improvement of electronics technologies.
- Communicate effectively on both technical and general issues with peers, associate, clients and the general public to find solutions using technical proficiency.
- j Operate effectively and professionally within a team environment to solve complex problems of analyze, design and development of electronics systems.

k. Use all fundamental knowledge of electronics engineering, sciences and mathematics to plan, organize and use resources efficiently to reduce adverse effect on environments

P.E.S. Colis Dia Enginalerina Aurangabad

PES College of Engineering, Aurangabad.

Department of Electrical Engineering

PROGRAM OUTCOMES: Upon successful completion of this course it is expected that electrical graduate will have ability to

- Apply the knowledge of science, mathematics and engineering to solve the problems related to electrical engineering.
- Identify, design and conduct the experiments to analyze and interpret data to verify the performance of electrical systems or equipment's.
- Design an electrical system, component or process to meet the desired EEPs within realistic constraints such as economic, environmental, social, political, ethical, health and safety, manufacturability, and sustainability using professional standards applicable in electrical engineering practice.
- Proficiently apply theoretical & numerical analysis to conceive, control & optimize the performance of multidisciplinary applications.
- To identify, formulate, and solve engineering problems in terms of economics, safety and the social and physical environment, and implement approaches to minimize any adverse impact leading to sustainable development of society.
- Understand professional and ethical responsibility.
- Communicate effectively on both technical and general issues with peers, associate, clients and the general public to find solutions using technical proficiency.
- Understand; proficiently apply a system approach for electrical system design and addressing the broad contextual constraints, leading to sustainable development of global level electrical technologies and standards.
- Recognition of the need for, and an ability to engage in research and to involve in lifelong learning.
- Knowledge of contemporary issues.
- Use the techniques, skills, and modern engineering tools necessary for engineering practice.

Program specific Outcomes:

1)To create professional graduates in the field of electrical engineering with capability to apply the knowledge of Electrical engineering and to solve related problems.

2)To execute multi-disciplinary profiles through theoretical and numerical analysis conceive, control and optimize the system performance

3)To serve for the betterment of mankind in the society professionally with ethics and moral responsibilities.

PES College of Engineering, Aurangabad. Department of Civil Engineering

PROGRAM Ojectives (POs)

Engineering Graduates will be able to:

- Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.
- Problem analysis: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences and engineering sciences.
- Design/development of solutions: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety and the cultural societal and environmental considerations.
- Conduct investigations of complex problems: Use research based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
- Modern tool usage: Create, select and apply appropriate techniques, resources and modern engineering and IT tools including prediction and modelling to complex engineering activities with an understanding of the limitations.
- The engineer and society: Apply reasoning informed by the contextual knowledge to assessisocietal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.
- Environment and sustainability: Understand the impact of the professional engineering solutions in society and environmental contexts, demonstrate the knowledge of, and need for sustainable development.
- Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.
- 9. Individual and team work: Function effectively as an individual and as a member or leader in diverse teams, and in multidisciplinary settings.
- 10. Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as being able to comprehend and write effective reports and design documentation make effective presentations and give and receive clear instructions.
- 11. Project management and finance: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.
- 12. Life-long learning: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

P.E.S. College of Engineering

P.E.S. College of Engineering Nagsenvana, Aurangabad Department of Mechanical Engineering Program Outcomes

At the end of the Program/Course the students will be able to

- Apply the knowledge of Mathematics, Basic Sciences and Mechanical Engineering to formulate engineering problems
- Identify, formulate and analyze complex Mechanical Engineering problems and give robust solution to them
- Design, analyze and manufacture various mechanical systems and assemble them to make a project
- Design, model and analyze various thermal systems.
- 5. Select, create and apply modern mechanical engineering and TT Tools to complex. Engineering activates with understanding of limitations.
- Design, model, simulate and analyze various mechanical components using CAD/CAM/CAE
- 7. Visualize and to work on multi disciplinary projects
- Acquire communication, leadership, entrepreneurship skills and implement the knowledge of professional ethical practices for the development of Society.
- Understand the contemporary issues of the society and provide engineering solutions to them
- 10. Acquire skills and ability for lifelong learning
- Understand the engineering and management principle and apply these to the multidisciplinary environment
- 12. Proficiently identify and apply project management and operation research includologies for optimization of engineering problems

P.E.S. College of Engineering Aurangebad People Education Society's (Mumbai)

P. E. S. College of Engineering, Aurangabad Department of Computer Science & Engineering Program outcomes, program specific outcomes

Course Outcomes:

Course Outcomes
1. Students will able to understand and proficiently apply the relevant sciences and scientific methods to Engineering Mathematics, to design solutions to complex
problems.2. Students will able to identify, interpret and critically appraise current developments
and advanced technologies and apply them to Engineering Mathematics.3. Students will able to determine analyses and proficiently apply theoretical and
numerical analysis of phenomena to conceive, control and optimize the performance of Engineering Mathematics.
4. Students will able to develop and implement creative and innovative approaches to problem solving.
 Student will be able to formulate problems precisely and solve the problems. Student will be able to apply formal proof techniques, and explain their reasoning.
 Student will be able to appry formal proof techniques, and explain their reasoning clearly. Students can enclose basics browledge gained by methometical logic and engly them.
 Students can analyze basics knowledge gained by mathematical logic and apply them. Use algorithms for suitable applications
1. To train the students with concept of microprocessor and computer architecture and organization
 To provide the knowledge of instruction set of 8086 and assembly programming. To analyze the memory operations
 Student will be able to understand the basic graphics primitives. Students will implement the graphical programming techniques to design structures.
and soft wares.
 Student will be able to build interactive models with various transformations. Student will be able to implement and analyze geometric algorithms.
1. Student will be able to understand the features of C++ supporting object oriented
 Student will be able to understand the relative merits of C++ as an object oriented
 3. Student will be able to understand how to produce object-oriented software using C++ 4. Student will be able to understand how to apply the major object-oriented concepts to implement object oriented programs in C++, encapsulation, inheritance and polymorphism
TE CSE PART-I Course Code: CSE 301 Operating System

TE CSE PART-I Course Code: CSE302 Theory of computation
TE CSE PART-I Course Code: CSE303 Database Management System

TE CSE PART-I	1. The students will be able to apply object oriented features to real time entities.
a a 1	2. The students will be able handle exceptions & implement multithreaded
Course Code:	programs.
CSE304	3. The students will be able implement database programming.
.	4. The students will be able design & implement GUI with event handling
Programming in	5. The students will be able develop I/O & networking programs.
Java	
TE CSE PART-I	1. To understand fundamental concepts of computer networking and
Computer Network	functionality of layered network architecture.
Architecture &	2 To understand wireless and mobile networking concepts
Protocols (Elective-	3 To apply networking concepts to various situations classifying networks
D	analysing performance of computer network infrastructure
1)	analysing performance of computer network infrastructure.
Course Code:	
CSE341	
TE CSE PART-I	1 Students should be able to understand digital image processing beyond the
Digital Image	fundamental level
Digital intage Drocossing	2 To study complete digital image processing steps
r locessing	2. To study complete digital image processing steps. 3. Students should be able to choose appropriate image processing algorithm to
(Elective-I)	5. Students should be able to choose appropriate image processing argorithm to achieve desired result
Course Code:	4 Students should be able to properly implement DIP algorithms using modern
Course Coue.	4. Students should be able to property implement DIF algorithms using modern
CSE342	computing tools Such as MATLAB, interpret and present the results.
TE CSE PART-II	1. The student will be able to define, formulate problem definitions for designing
005252	algorithms.
CSE352	2. The student will be able to understand the syntax and design algorithms.
Design and analysis	3. The student will be able to use the various design methods and skills to solve the
of Algorithms	problem like TSP, Knapsack.
of Augorithms	4. The student will be able to describe divide and conquer paradigm and explain when
	an algorithmic design situation calls for it.
	5. Will be able to analyze graph algorithms and apply graph concept to model
	Will be able to design the algorithm that mosts the prolistic constraints such as
	b. Will be able to design the algorithm that meets the realistic constraints such as
	Economic, Time constraint, Space constraint
	replan
	providin. 8 The student will be able to modify the existing electric time to solve the problems in
	o. The student will be able to mourry the existing algorithms to solve the problems in current designs as per the need of application
	current designs as per me need of application.

TE CSE PART –II	1. Will be able to use OOPS concepts, various computer architectures, languages for
с. <i>с</i> .	programming and UML to design software models. Will be able to define, formulate & analyze the problem definition also hardware
Software	software & other computing requirements to design a software solution for it
Engineering	3. Will be able to design software using software engineering phases to meet the desired
Course Code:	needs of a client within the realistic constraints such as environmental ethical,
CSE352	economic, political, manufacturing, and sustainability.
	4. Will be able to design software projects in various application areas like business,
	research, commercial, banking internet, mobile applications and maintain it.
	5. Will develop the software as per software engineering standards, & rules led by the society
	6. Will be able to analyze the impact of software on world economy, social aspects.
	7. Will be able to plan organize software development process so that computer
	resources efficiently.
TE CSE PART –II	1 Develop skills in Enterprise Java
$\Delta dvanced Iava$	2 Understanding advanced concepts in Java Programming
Course Code:	3 Understanding importance of Service oriented Architecture of today's web
Course Coue.	application
CSESSI	appreation
	1. Will be able to define, formulate problem definitions for designing various types of
BE CSE PART-I	compiler.
Principles of	2. Will be able to design programs using LEX, YACC tools for multidisciplinary
Compilers Design	3 Will be able to use the techniques and skills to design a program by using compiler
Course Code:	4. Will be able to identify and formulate the problems in a program and also verify the
CSE403	performance of a program.
	5. Will be able to design the software program for various application areas using
	compiler construction tools, the computer resources and components, to meet the
	desired needs.
	6. Will be able to develop and implement creative and innovative approaches to problem
	solving.
BE CSE PART-I	1. Develop and apply knowledge of parallel and distributed computing techniques and
Parallel and	methodologies.
Distributed	2. Apply design, development, and performance analysis of parallel and distributed
Computing Course	applications.
Code: CSE402	5. Use the application of fundamental Computer Science methods and algorithms in the development of parallel applications
	4 Explain the design testing and performance analysis of a software system and to be
	able to communicate that design to others.
BE CSE PART-I	1. To understand data warehouse
Data Warehousing	2. To understand and implement multidimensional model
& Data mining	3. To identify the problems, and apply mining algorithms
Course Code :	4. To describe the business intelligence (BI) methodology and concepts
CSE401	

BE CSE PART –I	1. Will be able to define, formulate & analyze the problem definition & also hardware, software & other computing requirements to design a software solution for it.
Visual Modelling Course Code:	2. Will be able to design software using software engineering phases to meet the desired needs of a client within the realistic constraints such as environmental ethical, economic political manufacturing and sustainability
CSE404	 Will develop the software as per software engineering standards, & rules led by the Society
	 Will be able to analyze the impact of software on world economy, social aspects. Will be able to plan organize software development process so that computer resources efficiently.
BE CSE PART –I	1. To learn and understand Cloud Technologies
Elective – I Cloud	2. To design, develop and deploy Cloud applications
Computing	3. To get acquainted with the challenges and security aspects of Cloud
Course Code:	Computing.
CSE441	4. To study Mobile Cloud Applications
BE CSE PART –II	1. Students will demonstrate the use of languages and operating systems for mobile devices in a small development exercises.
Mobile	 They will have a good understanding of how the underlying wireless and mobile communication networks work, their technical features, and what kinds of understanding the underlying wireless.
Computing	applications they can support. Critically analyze security issues of mobile and wireless computing system
Course Code	 Understand current technologies and architectures that provide the network and
CSF452	communications infrastructure for mobile enabled computer systems.
001432	5. Identify the appropriate development toolkits, IDE's and emulators for creating and publishing various mobile applications using WML and WML Script.
	6. Develop and implement creative and innovative approaches to problem solving.7. Communicate effectively on technical issues with clients.
BE CSE PART –II	 Explains what green IT is and examines the significance of green IT. Discusses environmental concerns, global warming and the principles of sustainable development
Green IT	 Discusses how data centers, cloud computing, storage systems, software and networks can be made greener
Course Code:	4 Highlights how IT could help businesses in their environmental initiatives and reduce
CSE492	their carbon emissions.
	5. Presents the drivers and benefits of energy-efficient computer networks and communications.
	6. Describes energy-efficient networking solutions from the perspective of reduced carbon cost and improved operational sustainability.
	7. Presents exemplar context data required for management systems with green objectives across domains.
	 Discusses current research and development on making cloud computing green Outlines future research directions emphasizing holistic efforts needed to make clouds a viable and sustainable computing alternative.

BE CSE PART –II Computer System Security and Laws Course Code : CSE451	 To understand the five security components and apply them when evaluating a given security mechanism. To understand basic cryptography including symmetric and asymmetric cryptography, message digests, digital signatures and digital certificates. To understand the basics of system security along-with the mechanisms for authentication and authorization. To understand the legal aspect and Forensics in the computer system security.
BE CSE PART –II Soft Computing Course Code: CSE453	 To understand the scope of soft computing and pattern recognition tasks that can be performed by some of the basic structures of artificial neural networks Analyse feed forward networks and understand the significance of nonlinear output functions of processing unit in feedback network for pattern storage. To describe and explain Core concepts and techniques of fuzzy logic. To understand Fuzzy Logic in database System and information.
M. Tech FY Part 1 High Performance Computing (Elective 2) Sub Code: MTCE1105	 To transform algorithms in the computational area to efficient programming code for modern computer architectures To write, organize and handle programs for scientific computations To create presentation of using tools for performance optimization and debugging To present analysis of code with respect to performance and suggest and implement performance improvements To present test cases to solve problems for multi-core or distributed, concurrent/Parallel environments.
M. Tech FY Part 2 Software Testing (Elective 3) Sub Code: MTCE1203	 To ensures the quality of product by preventing and detecting the defect To Verify and validate the user requirements by implementing testing strategies To focus on accurate and reliable result by generating test cases To provide information to take decision for next phase To gain confidence of work by evaluating the capabilities of a system and system performance

Department of Electronics and Telecommunication

SY- ETC SEM-III

1. <u>Analog Circuits (BTEXC302)</u>

Course Objectives:

- 1. To understand characteristics of IC and Op-Amp and identify the internal structure.
- 2. To introduce various manufacturing techniques.
- 3. To study various op-amp parameters and their significance for Op-Amp.
- 4. To learn frequency response, transient response and frequency compensation
- 5. techniques for Op-Amp.
- 6. To analyze and identify linear and nonlinear applications of Op-Amp.
- 7. To understand functionalities of PLL.

Course Outcomes:

On completion of the course, students will be able to:

- 1. Understand the characteristics of IC and Op-Amp and identify the internal structure.
- 2. Understand and identify various manufacturing techniques.

3. Derive and determine various performances based parameters and their significance for Op-Amp.

- 4. Comply and verify parameters after exciting IC by any stated method.
- 5. Analyze and identify the closed loop stability considerations and I/O limitations.
- 6. Analyze and identify linear and nonlinear applications of Op-Amp.
- 7. Understand and verify results (levels of V & I) with hardware implementation.
- 8. Implement hardwired circuit to test performance and application for what it is being designed.

2. <u>Electronic Devices & Circuits (BTEXC303)</u>

Course Objectives:

- 1. To introduce semiconductor devices FET and MOSFET, their characteristics, operations, circuits and applications
- 2. To introduce concepts of both positive and negative feedback in electronic circuits
- 3. To analyze and interpret FET and MOSFET circuits for small signal at low and high frequencies
- 4. To simulate electronics circuits using computer simulation software and verify desired results
- 5. To study the different types of voltage regulators.

Course Outcomes:

On completion of the course, students will be able to:

- 1. Comply and verify parameters after exciting devices by any stated method.
- 2. Implement circuit and test the performance.
- 3. Analyze small signal model of FET and MOSFET.
- 4. Explain behavior of FET at low frequency.
- 5. Design an adjustable voltage regulator circuits.

3. Network Analysis (BTEXC304)

Course Objectives:

- 1. To learn about the basic laws of electric circuits as well as the key fundamentals of the communication channels, namely transmission lines.
- 2. To understand the need of simplification techniques of complicated circuits
- 3. To learn about the comprehensive insight into the principle techniques available for characterizing circuits, networks and their implementation in practice.
- 4. To learn about the use of mathematics, need of different transforms and usefulness of differential equations for analysis of networks.

5. To train the students for handling analog filter design through theory of NA along with practical, this is basic requirement of signal processing field.

Course Outcomes:

On completion of the course, students will be able to:

- 1. Apply knowledge of mathematics to solve numerical based on network simplification and it will be used to analyze the same.
- 2. Design passive filters and attenuators theoretically and practically. To apply knowledge for design of active filters as well as digital filters and even extend this to advance adaptive filters.
- 3. Identify issues related to transmission of signals, analyze different RLC networks.
- 4. Find technology recognition for the benefit of the society.

4. Digital Logic Design (BTEXC305)

Course Objectives:

- 1. To acquaint the students with the fundamental principles of two-valued logic and various devices used to implement logical operations on variables.
- 2. To lay the foundation for further studies in areas such as communication, VHDL, computer.

Course Outcomes:

On completion of the course, students will be able to:

1. Use the basic logic gates and various reduction techniques of digital logic circuit in detail.

- 2. Design combinational and sequential circuits.
- 3. Design and implement hardware circuit to test performance and application.
- 4. Understand the architecture and use of VHDL for basic operations and Simulate using simulation software.

5. Basic Human Rights (BTHM3401)

Course Objectives:

1. To work for ensuring that basic human rights are respected everywhere.

2. To cooperate to avoid compromising on human rights for economic or political expediency

3. To recognize democratic institutions as a fundamental human right

4. To work towards the sovereignty and self-determination of entities with historical, cultural and ecological identity.

5. To actively engage with the Government of India and other countries to promote human rights education.

6. To bring diplomatic and commercial pressures on regimes that violates human rights, to ensure that they respect the basic rights of their citizens.

7. To keep the interests of disempowered communities foremost in all dealings with countries in which human rights violations occur

8. To develop a more distinctive and effective role for the International Court of Justice in the field of human rights

9. To promote a culture for educating the citizenry that cultivation and promotion of human rights culture is the sine qua non for the smooth functioning of the organs of a democratic State and for the kind of development that results into overall development of the society.

10. To train the young men and women for facing the challenges of the pluralistic society and the rising conflicts and tensions in the name of particularistic loyalties to caste, religion, region and culture

11. To study the effects of draconian laws and unlawful use of State's machinery and force by the enforcement agencies.

Course Outcomes:

On completion of the course, students will be able to:

1. Simply put, human rights education is all learning that develops the knowledge, skills, and values of human rights.

2. Strengthen the respect for human rights and fundamental freedoms.

3. Enable all persons to participate effectively in a free society.

4. Learn about human rights principles, such as the universality, indivisibility, and interdependence of human rights.

5. Learn about regional, national, state, and local law that reinforces international human rights law.

6. Learn and know about and being able to use global, regional, national, and local human rights instruments and mechanisms for the protection of human rights

SY- ETC SEM-IV

1. Electrical Machines and Instruments (BTEXC401)

Course Objectives:

1. Model and Analyze the performance of different types of DC machines

2. Learn the applications of DC generators

- 3. Analyze the performance of different types of DC motors
- 4. Analyze the performance of different types of Sensors and Transducers
- 5. Familiarize with the applications of DC machines
- 6. To prepare students to perform the analysis of any electromechanical system.
- 7. To empower students to understand the working of electrical equipment used in everyday life.

Course Outcomes:

On completion of the course, students will be able to:

- 1. The ability to formulate and then analyze the working of any electrical machine using mathematical model under loaded and unloaded conditions.
- 2. The skill to analyze the response of any electrical machine.
- 3. The ability to troubleshoot the operation of an electrical machine.
- 4. The ability to select a suitable measuring instrument for a given application.
- 5. The ability to estimate and correct deviations in measurements due to the influence of the instrument and due to the accuracy of the instrument.

2. Analog Communication Engineering (BTEXC402)

Course Objectives:

1. To introduce the concepts of analog communication systems.

2. To equip students with various issues related to analog communication such as modulation, demodulation, transmitters and receivers and noise performance.

3. To understand the concepts of modulation and demodulation techniques of angle modulation (frequency and phase)

Course Outcomes:

On completion of the course, students will be able to:

1. Understand and identify the fundamental concepts and various components of analog communication systems.

2. Understand the concepts of modulation and demodulation techniques.

3. Design circuits to generate modulated and demodulated wave.

4. Equip students with various issues related to analog communication such as modulation, demodulation, transmitters and receivers and noise performance.

5. Understand the concepts of modulation and demodulation techniques of angle modulation (frequency and phase).

6. Explain signal to noise ratio, noise figure and noise temperature for single and cascaded stages in a communication system.

7. Develop the ability to compare and contrast the strengths and weaknesses of various communication systems.

3. Microprocessor (BTEXC403)

Course Objectives:

1. Objective of this course is to introduce to the students the fundamentals of microprocessor.

2.After learning Microprocessor course, students will get advantage to pursue higher

studies in Embedded Systems or employment in core industries.

3. The learner can design microprocessor based systems and thus can become successful entrepreneur and meet needs of Indian and multinational industries.

4. The students can design and develop processor which can be used in Robotics, Automobiles, Space and many research areas.

5. The learners will acquaint optimization skills and undergo concepts design metrics for embedded systems.

6. The students will get acquainted with recent trends in microprocessor like pipelining, cache memory etc.

7. To understand the applications of Microprocessors.

8. To learn interfacing of real world input and output devices.

9. To study various hardware and software tools for developing applications.

Course Outcomes:

1. Learner gains ability to apply knowledge of engineering in designing different case studies.

2. Students get ability to conduct experiments based on interfacing of devices to or interfacing to real world applications.

3. Students get ability to interface mechanical system to function in multidisciplinary system like in robotics, Automobiles.

4. Students can identify and formulate control and monitoring systems using microprocessors.

5. Students will design cost effective real time system to serve engineering solution for Global, social and economic context.

6. This course understanding will enforce students to acquire knowledge of recent trends like superscalar and pipelining and thus finds recognition of continuous updation.

7. Learn use of hardware and software tools.

8. Develop interfacing to real world devices.

4. Signals and Systems (BTEXC404)

Course Objectives:

1. To understand the mathematical description of continuous and discrete time signals and systems.

2. To classify signals into different categories.

3. To analyze Linear Time Invariant (LTI) systems in time and transform domains.

4. To build basics for understanding of courses such as signal processing, control system and communication.

5. To develop basis of probability and random variables.

Course Outcomes:

On completion of the course, students will be able to:

1. Understand mathematical description and representation of continuous and discrete time signals and systems.

2. Develop input output relationship for linear shift invariant system and understand the convolution operator for continuous and discrete time system.

3. Understand and resolve the signals in frequency domain using Fourier series and Fourier transforms.

4. Understand the limitations of Fourier transform and need for Laplace transform and develop the ability to analyze the system in s- domain.

5. Understand the basic concept of probability, random variables & random signals and develop the ability to find correlation, CDF, PDF and probability of a given event.

4. Product Design Engineering (BTID405)

Course Objectives:

1. To acquaint the students with the fundamental principles of product.

2. The students will be exposed to hardware details of different Product

3. The students will be exposed to hardware details of product with the related signals and their implications.

4.To lay the foundation for further studies in different areas.

Course Outcomes:

At the end of the course, students will be able to

- 1. Create simple mechanical or other designs
- 2. Create design documents for knowledge sharing
- 3. Manage own work to meet design requirements
- 4. Work effectively with colleagues.

5. Numerical Methods and Computer Programming (BTBSC406)

Course Objectives:

1. To prepare students for successful career in industries, for Post Graduate programmes and to work in research institutes.

2. To understand different numerical techniques used for solving algebraic and transcendental equations.

3. To understand numerical methods to solve a system of linear equations.

4. To understand numerical integration and differentiation techniques.

Course Outcomes:

On completion of the course, students will be able to:

1. Able to solve algebraic and transcendental equations by using numerical techniques and will be able to compare different numerical techniques used for this purpose and also will be able to choose a proper one as per the requirement of the problem.

2. Able to solve a system of linear equations with any number of variables using different direct and iterative numerical techniques.

3. Understand the concept of interpolation, finite difference operators and their relations, and can apply different interpolation techniques on equi-spaced or non equi-spaced data values.

4. Prepare them to write computer programs for the numerical computational techniques.5. Understand application of the NMCP course in many engineering core subjects like signal processing, digital communication, numerical techniques in electromagnetics etc.

6. Understand procedure-oriented and object oriented programming concepts.

7. Capable of writing C and C++ programs efficiently.

TY-ETC SEM-I

1. Electromagnetic Field Theory (BTEXC501)

Course Objectives:

1. Learners can be able to explore their knowledge in the area of EM Waves and its analysis.

- 2. To learn basic coordinate system, significance of divergence, gradient, curl and its applications to EM Waves.
- 3. To understand the boundary conditions for different materials /surfaces.

4. To get insight on finding solution for non-regular geometrical bodies using Finite Element Method, Method of Moments, Finite Difference Time Domain.

- 5. To get the basics of microwave, transmission lines and antenna parameters.
- 6. Students get acquainted with different physical laws and theorems and provide basic platform for upcoming communication technologies.

Course Outcomes:

At the end of this course students will demonstrate the ability to

- 1. Understand characteristics and wave propagation on high frequency transmission lines
- 2. Carryout impedance transformation on TL
- 3. Use sections of transmission line sections for realizing circuit elements
- 4. Characterize uniform plane wave
- 5. Calculate reflection and transmission of waves at media interface
- 6. Analyze wave propagation on metallic waveguides in modal form
- 7. Understand principle of radiation and radiation characteristics of an antenna.

2. Control System Engineering (BTEXC502)

Course Objectives:

- 1. To introduce the elements of control system and their modeling using various
- 2. Techniques.
- 3. To introduce methods for analyzing the time response, the frequency response and the
- 4. stability of systems.
- 5. To introduce the concept of root locus, Bode plots, Nyquist plots.
- 6. To introduce the state variable analysis method.
- 7. To introduce concepts of PID controllers and digital and control systems.
- 8. To introduce concepts programmable logic controller.

Course Outcomes:

At the end of this course, students will demonstrate the ability to

1. Understand the modeling of linear-time-invariant systems using transfer function and state-space representations.

2. Understand the concept of stability and its assessment for linear-time invariant systems.

3. Design simple feedback controllers

3. Computer Architecture (BTETC503)

Course Objectives:

- 1. To introduce basic concepts of computer organization and to illustrate the computer organization concepts by Assembly Language programming.
- 2. To understand operating systems and how they work with the computer and students will understand the relationship between hardware and software specifically how machine
 - organization impacts the efficiency of applications written in a high-level language.
- 3. Students will be able to make use of the binary number system to translate values between the binary and decimal number systems, to perform basic arithmetic operations and to construct machine code instructions and students will be able to design and implement solutions for basic programs using assembly language.
- 4. Students will be able to design logical expressions and corresponding integrated logic circuits for a variety of problems including the basic components of a CPU such as adders, multiplexers, the ALU, a register file, and memory cells and to explain t fetch execute cycle performed by the CPU and how the various components of the data path are used in this process.

Course Outcomes:

At the end of this course students will demonstrate the ability to

- 1. learn how computers work
- 2. know basic principles of computer"s working
- 3. analyze the performance of computers
- 4. know how computers are designed and built

4. Digital Signal Processing (BTEXC504)

Course Objectives:

- 1. To introduce students with transforms for analysis of discrete time signals and systems.
- 2. To understand the digital signal processing, sampling and aliasing.
- 3. To use and understand implementation of digital filters.
- 4. To understand concept of sampling rate conversion and DSP processor architecture.

Course Outcomes:

After successfully completing the course students will be able to

1. Understand use of different transforms and analyze the discrete time signals and systems.

- 2. Realize the use of LTI filters for filtering different real world signals.
- 3. Capable of calibrating and resolving different frequencies existing in any signal.
- 4. Design and implement multistage sampling rate converter.
 - 5. Design of different types of digital filters for various applications.

5. Microcontroller and its Applications (BTEXC505)

Course Objectives:

1. Objective of this course is to introduce to the students the fundamentals of microcontroller.

- 2. After learning Microprocessor course, students will get advantage to pursue highe studies in Embedded Systems or employment in core industries.
- 3. The learner can microcontroller design based systems and thus can become successful entrepreneur and meet needs of Indian and multinational industries.
- 4. The students can design and develop processor which can be used in Robotics, Automobiles, Space and many research areas.
- 5. The learners will acquaint optimization skills and undergo concepts design metrics for embedded systems.
- 6. The students will get acquainted with recent trends in microcontroller like pipelining, cache memory etc.
- 7. To understand the applications of Microcontrollers.
- 8. To understand need of microcontrollers in embedded system.
- 9. To understand architecture and features of typical Microcontroller.
- 10. To learn interfacing of real world input and output devices.
- 11. To study various hardware and software tools for developing applications.

Course Outcomes:

- 1. Learner gains ability to apply knowledge of engineering in designing different case studies.
- 2. Students get ability to conduct experiments based on interfacing of devices to or interfacing to real world applications.
- 3. Graduates will be able to design real time controllers using microcontroller based system.

6. Probability Theory and Random Processes (BTEXPE506A)

Course Objectives:

- **1.** To develop basic of probability and random variables.
- 2. The primary objective of this course is to provide mathematical background and sufficient experience so that the student can read, write, and understand sentences in the language of probability theory, as well as solve probabilistic problems in engineering and applied science.

Course Outcomes:

At the end of this course students will demonstrate the ability to

- 1. Understand representation of random signals
- 2. Investigate characteristics of random processes
- 3. Make use of theorems related to random signals
- 4. To understand propagation of random signals in LTI systems.

7. Introduction to MEMS (BTEXPE506D)

Course Objectives:

1. The objective of this course is to make students to gain basic knowledge on overview of

MEMS (Micro electro Mechanical System) and various fabrication techniques.

2. This enables them to design, analysis, fabrication and testing the MEMS based components and to introduce the students various opportunities in the emerging field of MEMS.

3. This will enables student to study applications of micro-sensors and micro-actuators, various MEMS fabrication technologies, MEMS-specific design issues and constraints, Dynamics and modeling of microsystems, getting access to fabrication and testing in academia and industry.

Course Outcomes:

At the end of the course the students will be able to

- 1. Appreciate the underlying working principles of MEMS and NEMS devices.
- 2. Design and model MEM devices.

TY-ETC SEM-II

1. Antennas and Wave Propagation (BTETC601)

Course Objectives:

- **1.** To understand the applications of electromagnetic engineering.
- **2.** To formulate and solve the Helmholtz wave equation and solve it for Uniform Plane Wave.
- 3. To analyze and understand the Uniform plane wave propagation in various media.
- 4. To solve the electric field and magnetic fields for a given wire antenna.

Course Outcomes:

After successfully completing the course students will be able to

- 1. Formulate the wave equation and solve it for uniform plane wave.
- 2. Analyze the given wire antenna and its radiation characteristics.
- 3. Identify the suitable antenna for a given communication system.

2. Computer Network & Cloud Computing (BTETC602)

Course Objectives:

1. To develop an understanding of modern network architectures from a design and performance perspective.

- **2.** To introduce the student to the major concepts involved in wide-area networks (WANs), local area networks (LANs) and Wireless LANs (WLANs).
- **3.** To provide an opportunity to do network programming
- 4. To provide a WLAN measurement ideas.

Course Outcomes:

1. To master the terminology and concepts of the OSI reference model and the TCP-IP reference model.

2. To master the concepts of protocols, network interfaces, and design/performance issues in local area networks and wide area networks.

3. To be familiar with wireless networking concepts.

4. To be familiar with contemporary issues in networking technologies.

5. To be familiar with network tools and network programming.

6. For a given requirement (small scale) of wide-area networks (WANs), local area networks (LANs) and Wireless LANs (WLANs) design it based on the market available component.

7. For a given problem related TCP/IP protocol developed the network programming.8. Configure DNS DDNS, TELNET, EMAIL, File Transfer Protocol (FTP), WWW, HTTP, SNMP, Bluetooth, Firewalls using open source available software and tools.

3. Digital Image Processing (BTETC603)

Course Objectives:

1. An ability to use current techniques, skills, and tools necessary for computing practice with an understanding of the limitations

Course Outcomes:

- 2. After completion of this course students will be able to
- 3. 1. Review the fundamental concepts of digital image processing system.
- 4. 2. Analyze images in the frequency domain using various transforms.
- 5. 3. Categories various compression techniques.
- 6. 4. Interpret image segmentation and representation techniques.

4. Power Electronics (BTETPE604C)

Course Objectives:

- 1. To introduce students to different power devices to study their construction, characteristics and turning on circuits.
- 2. To give an exposure to students of working & analysis of controlled rectifiers for different loads, inverters, DC choppers, AC voltage controllers and resonant converters.
- 3. To study the different motor drives, various power electronics applications like
- 4. UPS, SMPS, etc. and some protection circuits.

Course Outcomes:

At the end of this course students will demonstrate the ability to

- 1. Build and test circuits using power devices such as SCR
- 2. Analyze and design controlled rectifier, DC to DC converters, DC to AC inverters,
- 3. Learn how to analyze these inverters and some basic applications.
- 4. Design SMPS.

5. Digital System Design (BTETOE605A)

Course Objectives:

1. The concept and theory of digital Electronics are needed in almost all electronics and telecommunication engineering fields and in many other engineering and scientific disciplines as well.

2. The main objective of this course is to lay the foundation for further studies in areas such as communication, VLSI, computer, microprocessor etc. One of the most important reasons for the unprecedented growth of digital electronics is the advent of integrated circuit.

3. This course will explore the basic concepts of digital electronics.

Course outcomes:

At the end of this course students will demonstrate the ability to

1. Design and analyze combinational logic circuits

2. Design & analyze modular combinational circuits with MUX/DEMUX, Decoder, Encoder

3. Design & analyze synchronous sequential logic circuits

4. Use HDL & appropriate EDA tools for digital logic design and simulation.

6. Employability & Skill Development (BTHM606)

Course Objectives:

- **1.** To develop analytical abilities.
- **2.** To develop communication skills.
- **3.** To introduce the students to skills necessary for getting, keeping and being successful in a profession.
- 4. To expose the students to leadership and team-building skills.

Course Outcomes:

On completion of the course, student will be able to:

- 1. Have skills and preparedness for aptitude tests.
- 2. Be equipped with essential communication skills (writing, verbal and non-verbal)
- 3. Master the presentation skill and be ready for facing interviews.
- 4. Build team and lead it for problem solving.

7. Digital Communication (BTETC701)

Course Objectives:

- 1. To understand the building blocks of digital communication system.
- 2. To prepare mathematical background for communication signal analysis.
- 3. To understand and analyze the signal flow in a digital communication system.
- **4.** To analyze error performance of a digital communication system in presence of noise and other interferences.
- 5. To understand concept of spread spectrum communication system.

Course Outcomes:

1. Analyze the performance of a baseband and pass band digital communication system in

terms of error rate and spectral efficiency.

2. Perform the time and frequency domain analysis of the signals in a digital communication

system.

3. Select the blocks in a design of digital communication system.

4. Analyze Performance of spread spectrum communication system.

BE-ETC (BAMU Structure) SEM-I

1. Digital Image Processing

Course Outcomes:

After learning the course the students should be able to:

1.Understand the basic image enhancement techniques in spatial & frequency domains. 2.Understand the various kind of noise present in the image and how to restore the noisy image.

3.Understand the basic multiresolution techniques and segmentation methods.

4. Apply different image processing concepts for image handling in various fields.

5. Apply various compression standards studied, reducing the image size for optimizing storage and transmission bandwidth in their image processing related projects.

6. Work as a team leader to work on complex projects in a project team environment

2. Very Large Scale Integration Design

Course Objectives

- 1. To learn basic CMOS Circuits.
- 2. To learn CMOS process technology.
- 3. To learn techniques of chip design using programmable devices.

4. To learn the concepts of designing VLSI Subsystems.

5.Understand the concepts of Physical Design Process such as partitioning, Floorplanning, Placement and Routing.

6.Discuss the concepts of design optimization algorithms and their application to physical design automation.

7.Understand the concepts of simulation and synthesis in VLSI Design Automation

Course Outcome

- 1. Identify the various IC fabrication methods.
- 2. Express the Layout of simple MOS circuit using Lambda based design rules.
- 3. Apply the Lambda based design rules for subsystem design
- 4. Differentiate various FPGA architectures.
- 5. Design an application using Verilog HDL.
- 6. Concepts of modeling a digital system using Hardware Description Language.

7. Students are able to know how to place the blocks and how to partition the blocks while for designing the layout for IC.

8. Students are able to solve the performance issues in circuit layout.

9. Students are able to analyze physical design problems and Employ appropriate automation algorithms for partitioning, floor planning, placement and routing

10. Students are able to decompose large mapping problem into pieces, including logic optimization with partitioning, placement and routing

3. Microwave & Radar Engineering

Course Outcomes:

The student after undergoing this course will be able to:

1. Explain different types of waveguides and their respective modes of propagation.

2. Analyze typical microwave networks using impedance, admittance, transmission and scattering matrix representations.

3. Design microwave matching networks using L section, single and double stub and quarter wave transformer.

4. Explain working of microwave passive circuits such as isolator, circulator, Directional couplers, attenuators etc.

5. Describe and explain working of microwave tubes and solid state devices.

6. Perform measurements on microwave devices and networks using power meter and VNA.

7. Explain the operation of RADAR systems and recite their applications.

4. Advanced Embedded System

Course Outcomes

Upon successful completion of this course it is expected that student will be able to

1. Understand fundamentals of embedded systems, design paradigms, architectures, possibilities and challenges, both with respect to software and hardware.

2. Practically apply gained theoretical knowledge in order to design, analyze and implement embedded systems, e.g. integrating embedded su00bsystems and applications.

3. Analyze a system both as whole and in the included parts, to understand how these parts interact in the functionality and properties of the system.

5. EL-I Wireless Mobile Communication

Course Outcomes:

Upon successful completion of this course students are able to

- 1. Discuss the cellular system design and technical challenges.
- 2. Explain classification of mobile communication system.
- **3.** Analyze the mobile radio propagation, diversity concepts, fading and channel modeling.
- 4. Develop ability to analyze improved data services in cellular communication.

BE-ETC (BAMU Structure) SEM-II

1. Computer Networks & Security

Course Outcomes:

At the end of the course, the student will be able to

1. Able to know basic concepts of computer, computer communication and use of it in networking.

2. Able to know basics of Networking with different switching techniques.

3. Study of Networking topologiges: Mesh and Bus toplogy, Star topology & ring Topology.

4. Network Software : device driver for network interface card, LAN, MAN, WAN.

5. Overview of Network model: ISO-OSI and TCP/IP network reference Model.

2. EL-II (Fiber Optic Communication)

Course Objectives

1. To List the components optical fiber transmission link, block diagram .

2.To develop elements of an optical fiber transmission link, block diagram, advantages of optical fiber communication.

3. Understand and explain the Ray theorytransmission, total internal reflection acceptance angle, numerical aperture and skew rays understanding optical fiber communication, applications and evolution of

fiber optic systems,

4. Understand the Ray theory transmission

5. To Distinguish internal reflection acceptance angle, numerical aperture and skew raysspecify their use

6. To List optical fiber communication, applications

7. To Explain Modes, electromagnetic mode theory and propagation l (U)

8. To Contrast and compare single mode and multimode fibers, linearly polarized modes

Course Outcome

After completion of the course, the student is able to

1. Distinguish Step Index, Graded index fibers and compute mode volume.

2. Explain the Transmission Characteristics of fiber and Manufacturing techniques of fiber/cable.

3. Classify the construction and characteristics of optical sources and detectors.

4. Discuss splicing techniques, passive optical components and explain noise in optical system.

5. Design short haul and long haul Analog/ Digital optical communication system and explain advanced optical transmission systems.

3. Antenna Theory

Course Objectives

Student will learn and understand

- **1.** Fundamental antenna parameters and numerical methods to analyze and differentiate the antennas.
- 2. Concept of radiation mechanism of various antennas.
- 3. Mechanism and models for radio-wave propagation.

Course Outcomes

On completion of this course, the students will be able to

- 1. Identify basic antenna parameters.
- 2. Design and analyze antenna arrays.
- 3. Design and analyze wire and aperture antennas.
- 4. Identify the characteristics of radio-wave propagation.

4. Wireless Mobile Communication

Course Outcomes

1. Students will be able to discuss the cellular system design and technical challenges.

2. Students will be able to analyze the Mobile radio propagation, fading, diversity concepts and the channel modeling.

3. Students will be able to analyze the design parameters, link design, smart antenna, beam forming and MIMO systems.

4. Students will be able to analyze Multiuser Systems, CDMA, WCDMA network planning and OFDM Concepts.

5. Students will be able to summarize the principles and applications of wireless systems and standards

PES College of Engineering

Department of Electrical Engineering

Subject wise course Outcomes

Academic Year 2019-20

First Year

Course Name: Basic Electrical Engineering

	Students will be able
CO1	To study basics of electrical engineering
CO2	To study basics of DC and AC electrical circuits
CO3	To study electromagnetism
CO4	To study transformer

Second Year

Course Name: NETWORK ANALYSIS AND SYNTHESIS.

	Students will be able
CO1	To review basic components of electric network.
CO2	To design and develop network equations and their solutions.
CO3	To apply Laplace theorem for electric network analyses
CO4	To analyze AC circuit.

Course Name: FLUID MECHANICS AND THERMAL ENGINEERING.

	Students will be able
CO1	To introduce properties of fluid and hydraulic measurement
CO2	To understand dynamics of fluid flow
CO3	To understand basic concepts of IC engines
CO4	To understand concept of refrigeration and air conditioning

Course Name: MEASUREMENT AND INSTRUMENTATION

	Students will be able
CO1	To understand philosophy of measurement.
CO2	To understand different methods analog and digital measurement
CO3	To study principle of construction and operation of different transducer and
	dismay methods
C	Nama Regio Human Dighta

Course Name: Basic Human Rights

		Students will be able
--	--	-----------------------

CO1	To understand fundamental rights
CO2	To understand basic human rights

Course Name: ENGINEERING ECONOMICS

	Students will be able
CO1	To study concept of time value of money
CO2	To study about demand in detail
CO3	To understand Meaning of Production and factors of production,
CO4	To understand dif. Concept about market

Course Name: ELECTRICAL ENGINEERING MATERIALS.

	Students will be able
CO1	To study about crystal structure
CO2	To understand magnetic material structure
CO3	To study about conducting and superconducting materials
CO4	To study dielectric and nano materials.

Course Name: ELECTRICAL MACHINES - I

	Students will be able
CO1	To study diff. types, construction and operating principle of diff. types of electrical machines
CO2	To study the transformer and its applications
CO3	To study the performance of DC motors and its applications
CO4	To study DC generator

Course Name: POWER SYSTEM-I

	Students will be able
CO1	To Understand basic operation of power system, power system components and their characteristics.
CO2	TO understand different power plants

Course Name: ELECTRICAL INSTALLATION AND ESTIMATION

	Students will be able
CO1	To prepare estimation and costing of electrical installations of power system,
CO2	To understand procedures of contracting and purchase.

Cou Course Name: NUMERICAL METHODS AND PROGRAMMING.

	Students will be able
CO1	To study and understand MATLAB programming.
CO2	To review mathematical concepts .
CO3	To develop computer program for linear and nonlinear equations.

Course Name: Product Design Engineering

	Students will be able to
CO1	Create simple mechanical or other designs
CO2	Create design documents for knowledge sharing
CO3	Manage own work to meet design requirements
CO4	Work effectively with colleagues

Course Name: SOLID STATE DEVICES.

	Students will be able
CO1	To study construction and characteristics of solid state devices.
CO2	To apply operational amplifier models in circuits employing negative feedback.
CO3	To design electronics circuit using Timer IC and voltage regulators.
CO4	To perform analysis of amplifiers using small signal models for the circuit
	elements.
CO5	To calculate the frequency response of circuits containing BJT, Op-Amp etc

Course Name: ANALOG AND DIGITAL ELECTRONICS

	Students will be able
CO1	To review basic number system.
CO2	To understand deign and characteristics of digital logic gates.
CO3	To study different techniques in use of digital circuits.
CO4	To design

Course Name: INTRODUCTION TO NON-CONVENTIONAL ENERGY SOURCES,

	Students will be able
CO1	To understand basic concepts, construction and operational features of nonconventional
	energy sources
CO2	To review the energy scenario
CO3	To study the solar ,wind energy and its practical applicaitons

Third Year

Course Name: Electrical Machines -II

	Students will be able
CO1	To study different methods of speed control of AC and DC motor
CO2	To study importance and procedure of different performance test on AC and DC
	motor.
CO3	To determine different different operating characteristics of AC and DC machines

Course Name: POWER SYSTEM-II

	Students will be able
CO1	To study different parameters of power system operation and control
CO2	To study load flow and Diff. methods of reactive power control.
CO3	To understand different methods of fault analysis and stability study

Course Name: MICROPROCESSOR AND MICRO CONTROLLER

	Students will be able
CO1	To know the architecture of 8085 and 8051.
CO2	To understand interfacing and interrupt features of 8085 and 8051.
CO3	To develop program for basic applications.

Course Name: VALUE EDUCATION, HUMAN RIGHTS AND LEGISLATIVE PROCEDURES

	Students will be able
CO1	To understand value of education and self-development
CO2	To develop good values and character
CO3	To know Human right and legislative procedure

Course Name: ADVANCES IN RENEWABLE ENERGY SYSTEMS

	Students will be able
CO1	To know the principle of energy conversion technique from biomass, geothermal and
CO2	hybrid energy systems.
CO3	To understand effects of air pollution and ecosystems

Course Name: POWER PLANT ENGINEERING.

	Students will be able
CO1	To review basic components of power system, energy sources.
CO2	To understand principle of construction and operation of different conventional power
	plants.

Course Name: PRINCIPLES OF ELECTRICAL MACHINE DESIGN

	Students will be able
CO1	To understand principles of electric machine design.
CO2	To design different components of electric machine.
CO3	To design Transformer
CO4	To understand CAD and use it for transformer design

Course name: power electronics

	Students will be able
CO1	understand various basic Power Electronics devices.
CO2	understand application of Power Electronics devices in electrical power
	systems
CO3	understand control of Electrical Motors through DC-DC converters, AC
	Converters.
CO4	understand the use of Inductors and Capacitors in Choppers, Inverters and
	Converters

Course Name: INDUSTRIAL AUTOMATION AND CONTROL

	Students will be able
CO1	To understand construction and working principle of different industrial measurement systems
CO2	To understand new trends in industrial process control.

Course Name: SWITCH GEAR AND PROTECTION

	Students will be able
CO1	To understand principles of protective relaying.
CO2	To understand principle of construction, operation and selection of different circuit breaker used in power system
CO3	To understand different protection schemes used in power system operation

Course Name: . PROJECT MANAGEMENT

	Students will be able
CO1	To understand concepts of project management.
CO2	To develop a project plan.
CO3	To understand the project implementation strategy.
CO4	To analyze post project affects.

Course Name: Control System Engineering

	Students will be able
CO1	Student will be able to understand the role of control system in advanced
	society's acting as a catalyst for performing progress and development.
CO2	Student will be able to apply the knowledge of mathematics, basic operation of
	any system and mechanism.
CO3	The student will be able to optimize the control system design in economical
	and efficient design procedure
CO4	Student will be able to manipulate the selected data in such a way to that the
	given goal can be achieved optimally and efficiently.

CO5	Student will be able to analyze the time response and frequency response of the
	system for developing innovative and creative approaches to enhance the
	reliability and efficiency of electrical systems.
CO6	Student will be able to use their control system skills to plan, design and
	response to technical needs for industry, government and research.

Final Year

Course Name: POWER SYSTEM OPERATION AND CONTROL

	Students will be able to
CO1	Explain the fundamental concept of power system.
CO2	Design the mathematical model of synchronous machine.
CO3	Design the mathematical model Excitation system and speed governing system.
CO4	Analyze the transient stability of power system using swing equation and equal
	area criteria
CO5	Analyze the economic operation of power system.
CO6	Explain the methods of Voltage control.

Course Name: High Voltage Engineering

	Students will be able to
CO1	Illustrate the concept of electric field stresses, applications of insulating
	materials and methods for Non-destructive testing of equipment like
	transformers, insulators, isolators, bushings, lightning arrestors, cables,
	circuit breakers and surge diverters.
CO2	Explain the breakdown process in solid, liquid, and gaseous materials
CO3	Analyze methods for generation and measurement of High Voltages and
	Currents (both ac and dc)
CO4	Describe the phenomenon of over-voltage and choose appropriate insulation co-
	ordination levels based on IS & IEC Standards

Course Name: Electrical Drives

	Students will be able to
CO1	Analyze the dynamics of Electrical Drives system.
CO2	Use various control techniques for controlling the speed of AC and DC motors.
CO3	Analyze the AC and DC drives.
CO4	To Select/recommend the appropriate Drive according to the particular applications.
CO5	State the recent technology of AC and DC drive

Course Name: Power system protection

	Students will be able to
CO1	Understand the different types of circuit breakers and relays
CO2	Understand the applications of relays in power system
CO3	Understand the protection of different components of power system

Course Name: Digital Signal Processing

	Students will be able to
CO1	Represent signals, systems and digital processing of analog signals.
CO2	Represent discrete time signals, systems and analysis of Discrete-Time
	Linear Time- Invariant Systems.
CO3	Apply digital signal processing techniques to analyze discrete time
	signals in time domain.
CO4	Apply digital signal processing techniques to analyze discrete time signals in
	frequency domain
CO5	Design different filter structure
CO6	Validate system functionality and evaluate results

Course Name: Flexible AC transmission

	Students will be able to
CO1	Understand the different types of converts
CO2	Understand the different controllers and regulators
CO3	Understand the compensators

Course Name: RENEWABLE ENERGY

	Students will be able
CO1	To know the principle of energy conversion technique from biomass, geothermal and
CO2	hybrid energy systems.
CO3	To understand effects of air pollution and ecosystems

P.E.S. College of Engineering

Nagsenvan, Aurangabad

Department of Civil Engineering

1.1. Course Outcomes (COs)

1) Course Name:- BTCVC302Mechanics of Solids

Year of Study:- 2019-20

- 1) Perform the stress-strain analysis.
- 2) Draw force distribution diagrams for members and determinate beams.
- 3) Find deflections in determinant beams.
- 4) Visualize force deformation behavior of bodies.

2) Course Name:- BTCVC303 Hydraulics I

- 1: Calibrate the various flow measuring devices.
- 2: Determine the properties of fluid and pressure and their measurement.
- 3: Understand fundamentals of pipe flow, losses in pipe and analysis of pipe network.
- 4: Visualize fluid flow phenomena observed in Civil Engineering systems

3) Course Name:- BTCVC304 Surveying - I

- 1: Perform measurements in linear/angular methods.
- 2: Perform plane table surveying in general terrain.
- 3: Know the basics of leveling and theodolite survey in elevation and angular measurements.

4) Course Name:- BTCVC305 Building Construction

- 1: Understand types of masonry structures.
- 2: Understand composition of concrete and effect of various parameters affecting strength.
- 3: Comprehend components of building and there purposes.
- 4: Comprehend the precast and pre-engineered building construction techniques.

5) Course Name:- BTCVC306Engineering Geology.

- 1: Recognize the different land forms which are formed by various geological agents.
- 2: Identify the origin, texture and structure of various rocks and physical properties of mineral.
- 3: Emphasize distinct geological structures which have influence on the civil engineering structure.
- 4: Understand how the various geological conditions affect the design parameters of structures.

6) Course Name:- BTCVC401Hydraulics II

- 1: Design open channel sections in a most economical way.
- 2: Know about the non-uniform flows in open channel and the characteristics of hydraulic jump.
- 3: Understand application of momentum principle of impact of jets on plane.

7) Course Name:- BTCVC402Surveying - II

- 1: Understand basics different types of curves on roads and their preliminary survey.
- 2: Perform setting of curves, buildings, culverts and tunnels.
- 3: Comprehend different geodetic methods of survey such as triangulation, trigonometric leveling.
- 4: Comprehend modern advanced surveying techniques.

8) Course Name:- BTCVC403Structural Mechanics - I.

1: Describe the concept of structural analysis, degree of indeterminacy.

2: Calculate slopes and deflection at various locations for different types of beams.

3: Identify determinate and indeterminate trusses and calculate forces in the members of trusses Perform the distribution of the moments the in continuous beam and frame.

9) Course Name:- BTCVE404A Numerical Methods in Engineering

1: Demonstrate the nuances of management functions.

2: Analyze the framework of a business organization.

3: Adopt an empirical approach toward business situations.

4: Apply various Management techniques.

10) Course Name:- BTCVC 501 Design of Steel Structures

1: Identify and compute the design loads and the stresses developed in the steel member.

2: Analyze and design the various connections and identify the potential failure modes.

3: Analyze and design various tension, compression and flexural members.

4: Understand provisions in relevant BIS Codes.

11) Course Name:- BTCVC 502 Structural Mechanics-II

1: Have a basic understanding of matrix method of analysis and will be able to analyze the determinant structure.

2: Have a basic understanding of the principles and concepts related to finite difference and finite element methods

3: Have a basic understanding of concept of influence line.

12) Course Name:- BTCVC 503 Soil Mechanics

1: Understand different soil properties and behavior

- 2: Understand stresses in soil and permeability and seepage aspects.
- 3: Develop ability to take up soil design of various foundations.

13) Course Name:- BTCVC 504 Environmental Engineering

- 1: Apply the water treatment concept and methods.
- 2: Prepare basic process designs of water and wastewater treatment plants.
- 3: Apply the wastewater treatment concept and methods.
- 4: Apply the solid waste management concepts.

14) Course Name:- BTCVC 505 Transportation Engineering.

- 1. Comprehend various types of transportation systems and their history of the development
- 2. Comprehend to various types of pavements
- 3. Design the pavements by considering various aspects associated with traffic safety measures.

15) Course Name:- BTCVE506A Materials, Testing & Evaluation

1. To develop skill among students to construct strong and durable structures by applying knowledge of material science.

2. To make the students aware of quality assurance and control in their real life as a professional.

16) Course Name:- BTCVE506C Development Engineering.

1. To develop multi scaled perspective about decisions in the built environment,

2. To expose the students to the analysis and evaluation of real world problems aiming to bring desired change in the society.

17) Course Name:- BTCVC601Design of Concrete Structures - I

1. Comprehend to the various design philosophies used for design of reinforced concrete.

2. Analyze and design the reinforced concrete slab using limit state and working state method.

3. Analyze and design the reinforced concrete beam using limit state and working state method.

4. Analyze and design the reinforced concrete column using limit state and working state method.

18) Course Name:- BTCVC602Foundation Engineering

1. To predict soil behavior under the application of loads and come up with appropriate solutions to foundation design queries.

2. Analyze the stability of slope by theoretical and graphical methods.

3. Analyze the results of in-situ tests and transform measurements and associated uncertainties into relevant design parameters.

4. Synthesize the concepts of allowable stress design, appropriate factors of safety, margin of safety, and reliability.

19) Course Name:- BTCVC603Concrete Technology

1: Understand the various types and properties of ingredients of concrete.

- 2: Understand effect of admixtures on the behavior of the fresh and hardened concrete.
- 3: Formulate concrete design mix for various grades of concrete.

20) Course Name:- BTCVC604Project Management

- 1. Understand various steps in project Management, different types of charts.
- 2. Construct network by using CPM and PERT method.
- 3. Determine the optimum duration of project with the help of various time estimates.
- 4. Know the concept of engineering economics, economic comparisons, and linear break even analysis problems.

5. Understand the concept of total quality Management including Juran and Deming's philosophy.

21) Course Name:- BTCVC606Building Planning and Design

- 1. To plan buildings considering various principles of planning and bye laws of governing body.
- 2. Comprehend various utility requirements in buildings.
- 3. Understand various techniques for good acoustics.

22) Course Name:- BTCVE605AWaste Water Treatments

- 1. Determine the sewage characteristics and design various sewage treatment plants.
- 2. Understand municipal water and wastewater treatment system design and operation.
- 3. Apply environmental treatment technologies and design processes for treatment of industrial waste water.
- 4. Understand the rural sanitation schemes.

23) Course Name:- BTCVE605DAdvanced Engineering Geology

1) Understand geological time scale and physiographic division of India and their geological characteristics and different

geological formation in India.

2) Perform sub surface exploration and interpret core log.

3) Solve numerical problem based on core drilling and seismic data.

4) Familiar with origin of earthquake, seismic wave and landslide in Deccan trap.

24) Course Name:- BTCVE 605E Advanced Soil Mechanics.

1: Behavior of soil based on its particle size and mineral content

2: Ability to understand the Earth work equipment

3: Ability to understand the necessity of ground improvement and potential of a ground for improvement

4: Understand the soil reinforcement mechanisms

5: Understand the grouting and injection methods.

25) Course Name:- BTCVC 701 Design of Concrete Structures II

1. Able to identify the behavior, analyze and design of the beam sections subjected to torsion.

2. Able to analyze and design of axially and eccentrically loaded column and construct the interaction diagram for them.

3. Understand various concepts, systems and losses in pre-stressing.

4. Able to analyze and design the rectangular and symmetrical I-section pre-stressed beam/girders.

26) Course Name:- BTCVC 702Infrastructure Engineering

1. Know about the basics and design of various components of railway engineering

2. Understand the types and functions of tracks, junctions and railway stations.

3. Know about the aircraft characteristics, planning and components of airport

4. Understand the types and components of docks and harbors.

27) Course Name:- BTCVC 703Water Resources Engineering

1: Understand need of Irrigation in India and water requirement as per farming practice in India.

2: Understand various irrigation structures and schemes.

3: Develop basis for design of irrigation schemes.

28) Course Name:- BTCVC 704 Professional Practices

1. Understand the importance of preparing the types of estimates under different conditions for various structures.

2. Know about the rate analysis and bill preparations and to study about the specification writing.

3. Know the various types of contract, accounts in PWD, methods for initiating the works in PWD and tendering.

4. Understand the valuation of land and buildings, various methods and factors affecting valuation.

29) Course Name:- BTCVE705A Plastic Analysis and Design

1. Understand modes of structural collapse.

2. Perform the plastic analysis and design of various determinant and in-determinant structures.

30) Course Name:- BTCVC 801Introduction to Earthquake Engineering

1. Capture complexities in earthquake resistant design of structures

2. Grasp Nature of earthquake vibration and associated forces on structures

3. Understand importance of designing the building to targeted seismic performance.

31) Course Name:- BTCVE802BConstruction Techniques.

- 1. Understand the planning of new project with site accessibility and services required.
- 2. Comprehend the various civil construction equipment's.
- 3. Familiar with layout of RMC plant, production, capacity and operation process.
- 4. Recognize various aspect of road construction, construction of diaphragm walls, railway track construction etc.

32) Course Name:- BTCVE803ABridge Engineering

- 1. Understand components of bridges and its various types.
- 2. Understand site selection criteria and comprehend various forces acting on bridges.
- 3. Analyze bridge structures using different analysis techniques.
- 4. Understand the importance of different types of bridge bearings.

33) Course Name:- BTCVE803BStructural Audit

1. Gain the knowledge of Bye laws, procedure of Structural audit and study the typical problems in structures.

- 2. Aware of causes and types of deterioration in structures.
- 3. Develop skills for use of various Nondestructive tests required during auditing of structures.
- 4. Strength evaluation of existing structures.
- 5. Acquire knowledge of legal procedure to conduct structural audits.
- 6. Prepare a Structural audit report.

34) Course Name:-BTCVE804ARock Mechanics

1: Understand the mechanism of rock under various conditions.

- 2: Able to determine the engineering properties of rocks and sub-surface conditions
- 3: Identify various cause of slope failure and suggest some preventive measures for them.

35) Course Name:- BTCVE804DFinite Element Method

1. Understand the different energy methods in structural analysis and basic concepts of finite element method.

2. Analyze 1-D problems related to structural analysis like Bars, Trusses, Beams and Frames using finite element approach.

- 3. Find solution to problems using direct approach methods like Rayleigh Ritz or Galerkin's Method.
- 4. Solve 2-D problems using knowledge of theory of elasticity.
- 5. Students will be able to implement the knowledge of numerical methods in FEM to find the solution to the various problems in statics and dynamics.

6. Analyze 1D, 2D, and 3D structures using different software packages based on FEM.

36) Course Name:- BTCVE804ERepair & Rehabilitation of Structures.

- 1. Understand factors of Serviceability and Durability of Structures.
- 2. Determine crack width, effect of crack on materials, effect of moisture on structures.
- 3. Understand methods for protection of steel structures and masonry structures.
- 4. Understand various materials and methodologies used for repairing of structures.
- 5. Understand and implement techniques used for repairing and maintenance of structure.
- 6. Understand procedure to strengthen the existing structures and structural elements.

P.E.S College of Engineering Department of Mechanical Engineering

Course Structure& CO

Course Structure for Semester III [Second Year] w.e.f. 2018-2019

BTMEC302 Materials Science and Metallurgy BTMEC303 Fluid Mechanics BTMEC304 Machine Drawing and CAD BTMEC305 Thermodynamics BTHM3401 Basic Human Rights

Course Structure for Semester IV [Second Year] w.e.f. 2018-2019

BTMEC401 Manufacturing Processes - I BTMEC402 Theory of Machines-I BTMEC403 Strength of Materials BTID405 Product Design Engineering – I BTHM3402 Interpersonal Communication Skill& Self Development

Course Structure for Semester V [Third Year] w.e.f. 2019-2020

BTMEC501 Heat Transfer BTMEC502 Applied Thermodynamics – I BTMEC503 Machine Design – I BTMEC504 Theory of Machines- II BTMEC505 Metrology and Quality Control

Course Structure for Semester VI [Third Year] w.e.f. 2019-2020

BTMEC601 Manufacturing Processes- II BTMEC602 Machine Design-II BTMEC603 Applied Thermodynamics- II BTMEC604B IC Engines

Course Structure for Semester VII [Third Year] w.e.f. 2019-2020

BTMEC701 Mechatronics BTMEC702 CAD/CAM BTMEC703 Manufacturing Processes - III

BTMEC302 Material Science and Metallurgy Course Outcomes:

CO1 Study various crystal structures of materials

CO2	Understand mechanical properties of materials and calculations of same using
	appropriate equations
CO3	Evaluate phase diagrams of various materials
CO4	Suggest appropriate heat treatment process for a given application
CO5	Prepare samples of different materials for metallography
CO6	Recommend appropriate NDT technique for a given application

BTMEC303 Fluid Mechanics

Course Outcomes:

CO1	Define fluid, define and calculate various properties of fluid
CO^{2}	Calculate hydrostatic forces on the plane and curved surfaces and explain
	stability of
	floating bodies
CO3	Explain various types of flow. Calculate acceleration of fluid particles
CO4	Apply Bernoulli's equation and Navier-Stokes equation to simple problems in
0.04	fluid
	mechanics
CO5	Explain laminar and turbulent flows on flat plates and through pipes
CO6	Explain and use dimensional analysis to simple problems in fluid mechanics
CO7	Understand boundary layer, drag and lift

BTMEC304 Machine Drawing and Computer Aided Drafting

Course Outcomes:

CO1	Interpret the object with the help of given sectional and orthographic views.
CO2	Construct the curve of intersection of two solids
CO3	Draw machine element using keys, cotter, knuckle, bolted and welded joint
CO4	Assemble details of any given part. i. e. valve, pump, machine tool part etc.
CO5	Represent tolerances and level of surface finish on production drawings
CO6	Understand various creating and editing commands in Auto Cad

BTMEC305 Thermodynamics

Course Outcomes:

004150	
CO1	Define the terms like system, boundary, properties, equilibrium, work, heat,
COI	idealgas, entropy etc. used in thermodynamics.
	Study different laws of thermodynamics and apply these to simple thermal
CO2	systems
	like balloon, piston-cylinder arrangement, compressor, pump, refrigerator,
	heat exchanger, etc. to study energy balance.
CO3	Study various types of processes like isothermal, adiabatic, etc. considering
005	system
	with ideal gas and represent them on p-v and T-s planes.
CO4	Apply availability concept to non-flow and steady flow type systems.

CO5	Represent phase diagram of pure substance (steam) on different	
	005	thermodynamic
		planes like p-v, T-s, h-s, etc. Show various constant property lines on them.

BTHM3401 Basic Human Rights

Course Outcomes:

CO1	Understand the history of human rights.
CO2	Learn to respect others caste, religion, region and culture.
CO3	Be aware of their rights as Indian citizen.
CO4	Understand the importance of groups and communities in the society.
CO5	Realize the philosophical and cultural basis and historical perspectives of
	human rights.
CO6	Make them aware of their responsibilities towards the nation.

BTMEC401 Manufacturing Processes-I

Course Outcomes:

CO1	Identify castings processes, working principles and applications and list various defects in metal casting
CO2	Understand the various metal forming processes, working principles and applications
CO3	Classify the basic joining processes and demonstrate principles of welding, brazing and soldering.
CO4	Study center lathe and its operations including plain, taper turning, work holding devices and cutting tool.
CO5	Understand milling machines and operations, cutters and indexing for gear cutting.
CO6	Study shaping, planing and drilling, their types and related tooling's

BTMEC402 Theory of Machines- I

Course Outcomes:

CO1	Define basic terminology of kinematics of mechanisms
CO2	Classify planar mechanisms and calculate its degree of freedom
CO3	Perform kinematic analysis of a given mechanism using ICR and RV methods
CO4	Perform kinematic analysis of a given mechanism analytically using vector or
	complexalgebra method
CO5	Perform kinematic analysis of slider crank mechanism using Klein's
	construction and analytical approach

BTMEC403 Strength of Materials Course Outcomes:
CO1	State the basic definitions of fundamental terms such as axial load, eccentric
	load, stress, strain, E, μ, etc.
	Recognize the stress state (tension, compression, bending, shear, etc.) and
CO2	calculate thevalue of stress developed in the component in axial/eccentric static
	and impact load cases.
	Distinguish between uniaxial and multiaxial stress situation and calculate
CO3	principalstresses, max. shear stress, their planes and max. normal and shear
	stresses on a given plane.
CO4	Analyze given beam for calculations of SF and BM
CO5	Calculate slope and deflection at a point on cantilever /simply supported beam
	usingdouble integration, Macaulay's, Area-moment and superposition methods
CO6	Differentiate between beam and column and calculate critical load for a column
	usingEuler's and Rankine's formulae

BTID405 Product Design Engineering - I Course Outcomes:

CO1	Create simple mechanicaldesigns
CO2	Create design documents for knowledgesharing
CO3	Manage own work to meet designrequirements
CO4	Work effectively withcolleagues

Semester -V

BTMEC501 HeatTransfer

CO1 Explain the laws of heat transfer and deduce the general heat conduction equationand to explain it for 1-D steady state heat transfer in regular shape bodies	
equationand to explain it for 1-D steady state heat transfer in regular shape	
bodies	
boules	
Describe the critical radius of insulation, overall heat transfer coefficient,	
thermalconductivity and lumped heat transfer	
CO3 Interpret the extended surfaces	
[CO4] Illustrate the boundary layer concept, dimensional analysis, forced and free	
convection under different conditions	
CO5 Describe the Boiling heat transfer, mass transfer and Evaluate theheat	
exchanger	

	and examine the LMTD and NTU methods applied to engineering problems
CO6	Explain the thermal radiation black body, emissivity and reflectivity and evaluation of view factor and radiation shields

BTMEC502 Applied Thermodynamics - I

Course Outcomes:

CO1	Define the terms like calorific value of fuel, stoichiometric air-fuel ratio, excess air,equivalent evaporation, boiler efficiency, etc. Calculate minimum air
	required for combustion of fuel.
CO2	Study and Analyze gas power cycles and vapour power cycles like Otto, Diesel, dual, Joule and Rankine cycles and derive expressions for the performance parameters likethermal efficiency, P _m
CO3	Classify various types of boiler, nozzle, steam turbine and condenser used in steampower plant.
CO4	Classify various types of IC engines. Sketch the cut section of typical diesel engineand label its components. Define the terms like TDC, BDC, r _c , etc.
CO5	Draw P-v diagram for single-stage reciprocating air compressor, with and without clearance volume, and evaluate its performance. Differentiate betweenreciprocating and rotary air compressors.

BTMEC503 Machine Design - I

Course Outcomes:

CO1	Formulate the problem by identifying customer need and convert into
	designspecification
CO2	Understand component behavior subjected to loads and identify failure
	criteria
CO3	Analyze the stresses and strain induced in the component
CO4	Design of machine component using theories of failures
CO5	Design of component for finite life and infinite life when subjected to
	fluctuatingload
CO6	Design of components like shaft, key, coupling, screw and spring

BTMEC504 Theory of Machines - II Course Outcomes:

CO1	Identify and select type of belt and rope drive for a particular application
CO2	Evaluate gear tooth geometry and select appropriate gears, gear trains
CO3	Define governor and select/suggest an appropriate governor
CO4	Characterize flywheels as per engine requirement
CO5	Understand gyroscopic effects in ships, aeroplanes, and road vehicles.
CO6	Understand free and forced vibrations of single degree freedom systems

BTMEC505 Metrology and Quality Control Course Outcomes:

CO1	Identify techniques to minimize the errors in measurement
CO2	Identify methods and devices for measurement of length, angle, and gear and
	threadparameters, surface roughness and geometric features of parts.
CO3	Choose limits for plug and ring gauges.
CO4	Explain methods of measurement in modern machineries
CO5	Select quality control techniques and its applications
C06	Plot quality control charts and suggest measures to improve the quality of
000	productand reduce cost using Statistical tools.

BTMEC506A Automobile Engineering

Course Outcomes:

CO1	Identify the different parts of the automobile.
CO2	Explain the working of various parts like engine, transmission, clutch, brakes
	etc.,
CO3	Demonstrate various types of drive systems.
CO4	Apply vehicle troubleshooting and maintenance procedures.
CO5	Analyze the environmental implications of automobile emissions. And
	suggestsuitable regulatory modifications.
CO6	Evaluate future developments in the automobile technology.

BTMEC506C Energy Conservation and Management

Course Outcomes:

CO1	Understand energy problem and need of energy management
CO2	Carry out energy audit of simple units
CO3	Study various financial appraisal methods
CO4	Analyse cogeneration and waste heat recovery systems
CO5	Do simple calculations regarding thermal insulation and electrical energy
	conservation

BTMEL509 Machine Design Practice - I

	ourse outcomest	
CO1	Apply design process to an open ended problem	
CO2	Determine suitable material and size for structural component of	
	machine/system	
CO3	Apply iterative technique in design including making estimate of unknown	
	values forfirst computation and checking or revisiting and re-computing	
CO4	Choose logically and defend selection of design factors	
CO5	Design of components for given part/system i.e. shaft, keys, coupling, links,	
	screws, springs etc.	

CO6	Work effectively as a part of design group/team
CO7	Have good communication skill, orally, graphically as well as in writing

Semester - VI

BTMEC601 Manufacturing Processes - II

Course Outcomes:

CO1	Understand the process of powder metallurgy and its applications
CO2	Calculate the cutting forces in orthogonal and oblique cutting
CO3	Evaluate the machinability of materials
CO4	Understand the abrasive processes
CO5	Explain the different precision machining processes
CO6	Design jigs and fixtures for given application

BTMEC602 Machine Design - II

Course Outcomes:

CO1	Define function of bearing and classify bearings.
CO2	Understanding failure of bearing and their influence on its selection.
CO3	Classify the friction clutches and brakes and decide the torque capacity and
	frictiondisk parameter.
CO4	Select materials and configuration for machine element like gears, belts and
	chain
CO5	Design of elements like gears, belts and chain for given power rating
C06	Design thickness of pressure vessel using thick and thin criteria

BTMEC603 Applied Thermodynamics – II Course Outcomes:

CO1	Apply first law of thermodynamics for closed systems and flow process. Produce TDS relations from Maxwell's relations.
CO2	Calculate thermal efficiencies of heat engine.
CO3	Calculate work done and heat transfer for flow and non-flow process.
CO4	Calculate properties of air vapor mixture using mathematical knowledge and
	psychrometric chart.

BTMEC604B IC Engines

CO1	Explainfuel injection systems in SI engine, types of combustion chamber and
	combustion process.

CO2	Explain different types of fuel injection system and combustion chambers of
	CI engine.
CO3	Explain the mechanism of pollution formation and the evolution of emission
	norms.
CO4	Describe the properties of various alternative fuels, engine modification
	required and emission characteristic of alternative fuels
CO5	Discuss various ignition methods used in I.C engine and electronic engine
	management system.

Final Year

Semester - VII

MED401-INTERNAL COMBUSTION (I. C.) ENGINES AND GAS TURBINES

Course Outcomes:

CO1	Explain fuel injection systems in SI engine, types of combustion chamber and
	combustion process.
CO2	Explain different types of fuel injection system and combustion chambers of
	CI engine.
CO3	Explain the mechanism of pollution formation and the evolution of emission
	norms.
CO4	Describe the properties of various alternative fuels, engine modification
	required and emission characteristic of alternative fuels
CO5	Discuss various ignition methods used in I.C engine and electronic engine
	management system.

MED402- AUTOMATIC CONTROL SYSTEM

Course Outcomes:

CO1	Understand basic control concepts and control actions.
CO2	Understand simple mathematical modeling and the concept of block diagram and
	signal flow graph.
CO3	Study of system in time & frequency domain and understand concept of stability.

MED403-METROLOGY & QUALITY CONTROL

CO1	Understand the principles, construction, use, techniques of handling and
	maintenance of various measuring instruments.
CO2	Plot and use of quality control charts and Suggest measures to improve the
	quality of product and reduce cost.
CO3	Students are expected to understand the fundamentals of quality & to apply
	different statistical process control tools for managerial decisions.
CO4	Understand the various types of sensors and their applications

CO5	Design a pneumatic circuit for a given application
CO6	Design a hydraulic circuit for a given application

MED404-ENERGY CONSERVATION AND MANAGEMENT

Course Outcomes:

CO1	Conceptual knowledge of the technology, economics and regulation related
	issues associated with energy conservation and energy auditing
CO2	Ability to analyse the viability of energy conservation projects
CO3	Capability to integrate various options and assess the business and policy
	environment regarding energy conservation and energy auditing
CO4	Advocacy of strategic and policy recommendations on energy conservation
	and energy auditing

MED405-: MECHATRONICS

Course Outcomes:

CO1	Define sensor, transducer and understand the applications of different sensors
	and transducers
CO2	Explain the signal conditioning and data representation techniques
CO3	Design pneumatic and hydraulic circuits for a given application
CO4	Write a PLC program using Ladder logic for a given application
CO5	Understand applications of microprocessor and micro controller
CO6	Analyse PI, PD and PID controllers for a given application
CO1	Define sensor, transducer and understand the applications of different sensors
	and transducers

Semester - VIII

MED451-AUTOMOBILE ENGINEERING

Course Outcomes:

CO1	Students understand the fundamentals of Automobile Engineering
CO2	Identify the different parts of the automobile.
CO3	Explain the working of various parts like engine, transmission, clutch, brakes.
CO4	Describe how the steering and the suspension systems operate.
CO5	Understand the environmental implications of automobile emissions

MED 452-PROJECT MANAGEMENT AND OPERATIONS RESEARCH

Course Outcomes:

CO1 To create awareness about optimization in utilization of resources.

CO2	To make them understand the concepts of Project Management for planning to
	execution of projects
CO3	To make them understand the feasibility analysis in Project Management and
	network analysis tools for cost and time estimation.
CO4	To enable them to comprehend the fundamentals of Contract Administration,
	Costing and Budgeting.
CO5	Make them capable to analyze, apply and appreciate contemporary project
	management tools and methodologies in Indian context.

MED453-REFRIGERATION AND AIR CONDITIONING

Course Outcomes:

CO1	Introduce students to HVAC technology, engineering, research, systems, system
	designs, energy impacts, and overall goals
CO2	Introduce students to HVAC technology, engineering, research, systems,
	system designs, energy impacts, and overall goals.
CO3	Students will demonstrate an understanding thermal comfort conditions with
	respect to temperature and humidity and human clothing and activities and its
	impact on human comfort, productivity, and health.
CO4	Students will demonstrate an understanding of the needs and requirements for
	ventilation and its impact on design and energy and its impact on human
	comfort, productivity, and health.
CO5	Students will demonstrate an understanding of psychrometrics and its
	application in HVAC engineering and design and will practice or observe
	psychrometric measurements.

MED 454 :FINITE ELEMENT ANALSIS

CO1	To familiarize students with the displacement-based finite element method for
	displacement and stress analysis.
CO2	To study approximate nature of the finite element method and convergence of
	results are examined.
CO3	It provides some experience with a commercial FEM code and some practical
	modeling exercises.

People's Education Society's (Mumbai) P.E.S. College of Engineering, Nagsenvana, Aurangabad 431002

Programme Code	Programme Name	Programme Specialization	Number of students appeared in the final year examination	Number of students passed in final semester/year examination	Pass Percentag e
213461210	BE	Mechanical Engineering	59	59	100
213429310	BE	Electrical Electronics and Power	95	95	100
213437210	BE	Electronics and Telecommunication	12	12	100
213424210	BE	Computer Science and Engineering	24	24	100
213419110	BE	Civil Engineering	83	82	98.79

Key Indicator- 2.6 Student Performance and Learning Outcome

2.6.1 Program and course outcomes for all Program offered by the institution are stated and displayed on website and communicated to teachers and students.

Program Outcomes (POs): Program Outcomes is the professional accomplishments which the program aims at and these are to be attained by the students by the time they complete the program. Some of the key attainments that are knowledge, skill development, good communication skills, creative thinking, discipline, inculcation of moral and ethical values, ability to work in teams, and critical thinking. are to be acquired by the students during their graduation.

After completion of course students can go for higher education or choose teaching as career in college or university. The courses also offers opportunities to students for jobs in Banking, SSC, Railway and even Civil services etc

- **Civil Engineering:** After successful completion of course, the student will be able to understand proficiency apply relevant knowledge of mathematics, science and engineering to solve civil engineering problems. He can design and conduct civil engineering experiment as well as analysis and interpretetation of data related to civil engineering projects. He can also plan, organize and use resources like water resources, building material, human resources etc.
- **Mechanical Engineering:** After successful completion of course, the student will develop an ability to function on multidisciplinary teams in the field of design, manufacturing, heat power, fluid power and control system. He can successful identify, formulate and solve engineering problem professionally and ethically.
- Electrical Engineering: After successful completion of course, the student will be well aware about the global level electrical engineering technology. He will be able to use state of art electrical techwares(Hardware and software) for analyzing the electrical engineering needs and problems to set the global level solutions.
- **Computer science Engineering:** After successful completion of course of Computer Science Engineering the student will be able to understand and proficiently apply the knowledge of mathematics, relevant sciences to CSE, to design software solutions to the given problem. He will develop an ability to design software and conduct their software simulations and testing to analyze and interpreter the results produced and verified their online performance. He will be able to design software projects for multidisciplinary applications areas and will be able to maintain it on field.
- Electronics and Telecommunication: :Upon successful completion of course, the graduate engineers will be able to understand and proficiently apply the relevant sciences and scientific method to electronic telecommunication engineering to design solution to complex problem in electronics systems , electronic circuit and control processes. he can identify , interpret and critically apprise current developments and advance technologies and apply them to electronics telecommunication field to enhance reliability and effiency of electronic based systems, components and proj

P. E. S. College of Engineering, Aurangabad

Civil Engineering Department

1. (A) Program Outcomes (POs)

The engineering graduate will be able to:

1. Engineering knowledge: Apply the knowledge of mathematics, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.

2. Problem analysis: Identity, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.

3. Design/development of solutions: Design solutions for complex engineering problems and design system components or process that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, social and environmental considerations.

4. Conduct investigations of complex problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.

5. Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.

6. The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.

7. Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.

8. Ethics:Apply ethical problems and commit to professional ethics and responsibilities and norms of the engineering practice.

9. Individual and team work:Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.

10. Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.

11. Project management and finance: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.

12. Life-long learning: Recognize the needs for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

(B). Program specific outcomes (PSOs)

1. Apply basic knowledgerelated to civil engineering to solve societal engineering problems.

2. Recognize and adopt to technical developments and to engage in life-long learning and develop consciousness for professional, social, legal and ethical responsibilities.

3. Excellent adoptability to the changing industrial and real world requirements.

2. Course Outcomes (Cos)

1. F. Y. B. Tech (civil)

101. BTES106/206 Basic Civil and Mechanical Engineering

Principal P.E.S.College of Engineering Aurangabad.

1. Identify various civil engineering materials and choose suitable material among various options.

2. Apply principles of surveying to solve engineering problems.

3. Identify various civil engineering structural components and select appropriate structural system among various options.

4. Explain and define various properties of basic thermodynamics, material and manufacturing processes.

5. Know and discuss the working principle of various power consuming and power developing devices.

Course	P0	PO	PO	PO	РО	РО	PO	PO	PO	PO	РО	РО
	1	2	3	4	5	6	7	8	9	10	11	12
101.1	-	1	-	-	-	-	1	1	-	-	1	-
101.2	-	-	-	-	1	1	-	-	-	-	1	-
101.3	1	1	1	-	1	-	-	1	1	-	-	1
101.4	1	1	-	1	1	1	1	-	-	-	-	1
101.5	-	1	-	1	1	-	1	1	1	-	1	1

102. BTES103/203 Engineering Mechanics

- 1. Apply fundamental laws of engineering mechanics.
- 2. Apply conditions of static equilibrium to analyze given force system.
- 3. Compute centre of gravity and moment of inertia of plane surfaces.

Engine

4. Compute the motion characteristics of a body particle for a rectilinear and curvilinear motion.

Course	P0	РО										
	1	2	3	4	5	6	7	8	9	10	11	12
102.1	3	3	-	-	1	-	-	-	-	-	-	1
102.2	3	3	-	-	1	-	-	-	-	-	-	1
102.3	3	3	-	-	1	-	-	-	-	-	-	1
102.4	3	3	-	-	1	-	-	-	-	-	-	1
102.5	3	3	-	-	1	-	-	-	-	-	-	1

5. Know and discuss relation between force and motion characteristics.

103. BTES105/205 Energy and Environmental Engineering

1. Identify conventional and non-conventional energy sources.

2. Know and discuss power consuming and power developing devices for effective utilization and power consumption.

3. Identify various sources of air, water pollution and its effects.

4. Know and discuss noise, soil, thermal pollution and identify solid, biomedical and hazardous waste.

5. Comprehend bout energy conservation and its importance.

Course	P0	PO	PO	РО	РО	РО	РО	РО	РО	PO	РО	PO
	1	2	3	4	5	6	7	8	9	10	11	12
103.1	1	3	1	2	1	1	1	1	-	-	-	1

103.2	1	2	1	1	1	1	1	1	-	-	1	1
103.3	-	1	1	-	1	2	2	2	1	1	1	1
103.4	1	1	2	1	1	2	2	2	1	1	1	1
103.5	1	1	2	2	1	1	1	1	1	1	1	1

2. S. Y. B. Tech: Semester-III

201.BTBSC301 Mathematics-III

1. Gain comprehensive knowledge of Laplace Transform and its application.

2. Understand Fourier Transform

3. Study partial Differential Equations, their formation and application.

4. Get familiar with Functions of complex variables (Differential and integral calculus)

5. On completion of the course, the student will be able to formulate and solve mathematical model of civil engineering phenomena in field of structure, survey, fluid mechanics and soil mechanics.

Course	P0	РО										
	1	2	3	4	5	6	7	8	9	10	11	12
201.1	3	3	1	-	-	-	-	-	-	-	-	3

201.2	3	3	1	-	-	-	-	-	-	-	-	3
201.3	3	3	1	-	-	-	I	-	I	I	I	3
201.4	3	3	1	-	-	-	I	-	-	-	1	3
201.5	3	3	1	1	1	1	1	1	1	-	1	3

202.BTCVC302 Mechanics of solids

1. Perform the stress-strain analysis.

2. Draw force distribution diagrams for members and determinate beams.

- 3. Find deflection in determinant beams.
- 4. Understand working of columns under different loading conditions.
- 5. Visualize force deformation behavior of bodies.

Course	P0	РО	PO	РО	РО	РО	PO	PO	PO	PO	РО	PO
	1	2	3	4	5	6	7	8	9	10	11	12
202.1	1	3	-	1	-	-	-	-	-	-	-	3
202.2	1	3	-	1	-	-	-	-	-	-	-	3
202.3	1	3	-	1	-	-	-	-	-	-	-	3

f Engineeri neabad.

203. BTCVC303 Hydraulics-I

1. Calibrate the various flow measuring devices.

2. Determine the properties of fluid and pressure and their measurement.

3. Understand fundamentals of pipe flow, losses in pipe and analysis of pipe network.

4. Use different methods of flow measurement and their application.

5. Visualize fluid flow phenomena observed in civil engineering systems.

Course	P0	РО	PO	РО	РО	РО	PO	РО	РО	РО	PO	PO
	1	2	3	4	5	6	7	8	9	10	11	12
203.1	1	1	-	1	-	-	1	1	-	-	-	1
203.2	1	1	-	1	-	-	-	-	-	-	1	1
203.3	1	2	2	1	1	1	1	1	-	-	-	1
203.4	1	1	-	1	1	1	1	1	-	-	-	1
203.5	1	2	-	1	1	-	-	-	-	-	-	1

204. BTCVC304 Surveying-I

1. Perform measurements in linear/angular methods.

of Engineerin neabad.

2. Perform plane table surveying in general terrain.

3. Know the basics of leveling and theodolite survey in elevation and angular measurements.

4. Understand contouring and its application, and Planimeter and its use to compute area.

5. Carry out engineering surveys for different projects like highways, tunnels, railways, waterways, mines, and curve ranging etc.

Course	P0	РО	PO	РО	РО	РО	PO	PO	PO	РО	PO	PO
	1	2	3	4	5	6	7	8	9	10	11	12
204.1	1	1	-	-	1	1	-	-	1	I	-	1
204.2	-	2	-	-	1	1	-	-	1	I	-	1
204.3	1	2	-	-	1	-	-	-	1	-	-	1
204.4	1	1	-	1	1	1	1	-	1	-	-	1
204.5	1	1	1	1	1	1	1	1	1	-	-	1

2.5. BTCVC305 Building Construction

1. Understand types of masonry structures.

2. Understand composition of concrete and effect of various parameters affecting strength.

3. Comprehend components of building and their purposes.

4. Comprehend the pre-cast and pre-engineered building construction techniques.

Engine

2.6. BTCVC306 Engineering Geology

1. Recognize the different land forms which are formed by various geological agents.

2. Identify the origin, texture and structure of various rocks and physical properties of minerals.

3. Emphasize distinct geological structures which have influence on the civil engineering structure.

4. Understand how the various geological conditions affect the design parameters of structures.

2.7. BTHS303 Soft Skill Development

1. Learners will acquire interpersonal communication skills.

2. Learners will develop the ability to work independently.

3. Learners will develop the qualities like self-discipline, self-criticism and self-management.

4. Learners will have the qualities of time management and discipline.

5. Learners will be able to present themselves as an inspiration for others.

2.9. BTCVL308 Surveying Laboratory-I

1. Use of the theodolite along with chain/tape, compass on the field.

2. Apply geometrical and trigonometric principles of basic surveying calculations.

3. Plan a survey, taking accurate measurements, field booking, and adjustment of errors.

4. Apply field procedures in basic types of surveys, as part of a surveying team.

5. Employ drawing techniques in the development of a topographic map.

2.10. BTCVL309 Building Construction- Drawings laboratory

1. Draw plan, elevation and section of various structures.

2. Apply the principles of planning and by-laws used for building planning.

3. Prepare detail working drawing for doors and windows.

2.11. BTCVL310 Engineering Geology Laboratory

1. Find the engineering properties of various geological materials.

- 2. Identify minerals and rocks by studying physical properties.
- 3. Draw sub-surface lithologs.
- 4. Calculate the linear measurement on surface.
- 3. S. Y. B. Tech Semester-IV

Principal P.E.S.College of Engineering Aurangabad.

3.1 BTCVC401 Hydraulics-II

1. Design open channel section in a most economical way.

2. Know about the non-uniform flows in open channel and the characteristics of hydraulic jump.

3. Understand applications of momentum principle of impact of jets on plane

3.2 BTCVC402 Surveying-II

1. Understand basics different types of curves on roads and their preliminary survey.

2. Perform setting of curves, buildings, culverts and tunnels.

3. Comprehend different geodetic methods of survey such as triangulation, trigonometric leveling.

4. Comprehend modern advanced surveying techniques.

3.3 BTCVC403 Structural Mechanics-I

1. Describe the concept of structural analysis, degree of indeterminacy.

2. Calculate slopes and deflection at various locations for different types of beams.

3. Identify determinate and indeterminate trusses and calculate forces in the members of trusses.

Principal P.E.S.College of Engineering Aurangabad.

4. Perform the distribution of the moments in the continuous beam and frame.

3.4 BTCVC405 Product Design Engineering

- 1. Create simple design of components or a system as a whole.
- 2. Create design documents for knowledge sharing.
- 3. Manage own work to meet design requirements.
- 4. Work effectively in a team.

3.7 BTCVC406 Engineering Management

- 1. Demonstrate the nuances of management functions.
- 2. Analyze the framework of a business organization
- 3. Adopt an empirical approach towards business situations.
- 4. Apply various management techniques.

3.9 BTCVL407 Hydraulic Engineering Laboratory-II

1. Understand various properties of fluids and measurement techniques.

- 2. Carry out calibrations of various flow measuring devices.
- 3. Understand mechanism of hydraulic jump, various jets and pumps.

3.10 BTCVL408 Surveying Laboratory-II

1. Determine contour level of field.

2. Determine the tachometric constants and grade of a line.

3. Use sub-tense bar for distance measurement

3.11 BTCVL409 Solid Mechanics Laboratory

1. Evaluate Young's Modulus, torsional strength, hardness and tensile strength of given specimen.

2. Determine the strength of coarse aggregates.

3. Find the compressive strengthof concrete cubes and bricks.

4. Determine physical properties of given coarse aggregates, fine aggregate and cement samples.

4. T. Y. B. Tech Semester-V

4.1 BTCVC501 Design of Steel Structures

1. Identify and compute the design loads and the stresses developed in the steel member.

2. Analyze and design the various connections and identify the potential failure modes.

3. Analyze and design various tension, compression and flexural members.

4. Understand provisions in relevant BIS codes.

4.2 BTCVC502 Structural Mechanics-II

1. Have a basic understanding of matrix method of analysis and will be able to analyze the determinant structure.

2. Have a basic understanding of the principles and concepts related to finite difference and finite element methods.

3. Have a basic understanding of concept of influence line.

4.3 BTCVC503 Soil Mechanics

- 1. Understand different soil properties and behavior.
- 2. Understand stresses in soil, permeability and seepage aspects.
- 3. Develop ability to take up soil design of various foundations.

4.4 BTCVC504 Environmental Engineering

- 1. Apply the water treatment concept and methods.
- 2. Prepare basic process designs of water and wastewater treatment plants.
- 3. Apply the wastewater treatment concept and methods.
- 4. Apply the solid waste management concepts.

4.5 BTCVC505 Transportation engineering

1. Comprehend various types of transportation systems and their history of the development.

Engine

2. Comprehend to various types of pavements.

3. Design the pavements by considering various aspects associated with traffic safety measures.

4.7 BTCVL508 Soil Mechanics Laboratory

1. Determine different engineering properties of soil.

2. Identify and classify soils based on standard geotechnical engineering practices.

3. Perform laboratory compaction and in-place density test.

4.8 BTCVL509 Environmental Engineering Laboratory

1. Quantify the pollutant concentration in water, wastewater and ambient air.

2. Recommend the degree of treatment required for the water and wastewater.

3. Analyze the survival conditions for the microorganism and its growth rate.

4.9 BTCVL510 Transportation Engineering Laboratory

1. Perform tests on various road construction materials.

2. Perform CBR tests on local soils to determine subgrade properties needed for roadways.

4.9 BTCVE506A Materials, testing & Evaluation

1. To develop skill among students to construct strong and durable structural by applying knowledge of material science.

2. To make the students aware of quality assurance and control in their real life as a professional.

4.10 BTCVE506C Development Engineering

1. to develop multi scaled perspective about decision in the built environment.

2. To expose the students to the analysis and evaluation of real world problems aiming to bring desired change in the society.

5. T. Y. B. Tech Semester-VI

5.1 BTCVC601 Design of Concrete Structures-I

1. Comprehend to the various design philosophies used for design of reinforced concrete.

2. Analyze and design the reinforced concrete slab using limit state and working state methods.

3. Analyze and design the reinforced concrete beam using limit state and working state methods.

4. Analyze and design the reinforced concrete column using limit state and working state methods.

5.2 BTCVC602 Foundation Engineering

1. To predict soil behavior under the application of loads and come up with appropriate solutions to foundation design queries.

2. Analyze the stability of slope By theoretical and graphical methods.

3. Analyze the results of in-situ tests and transform measurements and associated uncertainties into relevant design parameters.

4. Synthesize the concepts of allowable stress design, appropriate factors of safety, margin of safety and reliability.

5.3 BTCVC603 Concrete Technology

1. Understand the various types and properties of ingredients of concrete.

2. Understand effect of admixtures on the behavior of the fresh and hardened concrete.

3. Formulate concrete design mix for various grades of concrete.

5.4 BTCVC604 Project Management

1. Understand various steps in project management, different types of charts.

2. Construct network by using CPM and PERT methods.

3. Determine the optimum duration of project with the help of various time estimates.

4. Know the concept of engineering economics, economic comparisons, and linear break even analysis problems.

5. Understand the concept of total quality management including Juran and Deming's philosophy.

5.5 BTCVC606 Building Planning and Design

1. To plan building considering various principles of planning and byelaws of governing body.

2. Comprehend various utility requirements in buildings.

3. Understand various techniques for good acoustics.

5.7 BTCVL608 Building Design and Drawing Laboratory

1. Draw plan, elevation and section of load bearing and framed structures.

2. Draw plan, elevation and section of public building.

5.8 BTCVE605A Waste Water treatments

1. Determine the sewage characteristics and design various sewage treatment plants.

2. Understand municipal water and wastewater treatment system design and operation.

3. Apply environmental treatment technologies and design processes for treatment of industrial waste.

4. Understand the rural sanitation systems.

5.10 BTCVE605D Advanced Engineering Geology

1. Understand geological time scale and physiographic division of India and their geological characteristics and different geological formation in India.

2. Perform sub-surface exploration and interpret core log.

3. Solve numerical problem based on core drilling and seismic data.

4. Familiar with origin of earthquake, seismic wave and landslide in Deccan trap.

5.11 BTCVE605E Advanced soil mechanics

1. Behavior of soil based on its particle size and mineral contents.

2. Ability to understand the Earth work equipment.

3. Ability to understand the necessity of ground improvement and potential of ground for improvement.

4. Understand the soil reinforcement mechanisms.

5. Understand the grouting and injection methods.

6. B. Tech Semester-IIV

6.1 BTCVC701 Design of Concrete Structures-II

Principal P.E.S.College of Engineering Aurangabad.

1. Able to identify the behavior, analyze and design of the beam sections subjected to torsion.

2. Able to analyze and design of axially and eccentrically loaded column and construct the interaction diagram for them.

3. Understand various concepts, system and losses in pre-stressing.

4. Able to analyze and design the rectangular and symmetrical I-section pre-stressed beam/girders.

6.2 BTCVC702 Infrastructure Engineering

1. Know about the basics and design of various components of railway engineering.

2. Understand the type and functions of tracks, junctions and railway stations.

3. Know about the aircraft characteristics, planning and components of airport.

4. Understand the types and components of docks and harbors.

6.3 BTCVC703 Water Resources Engineering

1. Understand need of irrigation in India and water requirement as per farming practice in India.

2. Understand various irrigation structures and schemes.

3. Develop basis for design of irrigation schemes.

Principal P.E.S.College of Engineering Aurangabad.

6.4 BTCVC704Professional Practice

1. Understand the importance of preparing the types of estimates under different conditions for various structures.

2. Know about the rate analysis and bill preparation and to study about specification writing.

3. Know the various types of contract, accounts in PWD, methods for initiating the works in PWD and tendering.

4. Understand the valuation of land and building, various methods and factors affecting valuation.

6.5 BTCVC705Construction Technique

1. Understand the planning of new project with site accessibility and service required.

2. Comprehend the various civil construction equipments.

3. Familiar with layout of RMC plant, production, capacity and operation process.

4. Recognize various aspects of road construction, construction of diaphragm walls, railway track construction etc.

6.6 BTCVE705B Engineering Economics

1. Adopt as per principles of economics and financing.

Principal P.E.S.College of Engineering Aurangabad.

2. Analyze available alternatives and propose best suitable among them.

3. Apply various models of financial management and accounting.

6.8 BTCVE705D Limit State Design of Steel Structures

1. Identify and compute the design loads and the stresses developed in the steel member.

2. Analyze and design the various connections and identify the potential failure modes.

3. Analyze and design the various tension, compression and flexural members.

4. Understand various guidelines set by BIS Codes.

6.9 BTCVE705E Plastic Analysis and design

1. Understand modes of structural collapse.

2. Perform the plastic analysis and design of various determinant and in-determinant structures.

3. Adapt plastic theory of design for various structures.

6.10 BTCVE705F Water power Engineering

- 1. Identify potential energy sources and adapt as per the requirement.
- 2. Inculcate basics of electricity generation and power plants.

3. Propose suitable energy source for running a project optimistically.

6.12 BTCVE705B Air pollution control

1.Identify the sources of air pollutants and their effect on human, plants and materials.

2. Apply knowledge of meteorology for controlling air pollution.

3. Design air pollution controlling equipments.

4. Apply knowledge of legislation for preparation and control of air pollution.

6.13 BTCVE705C Bridge Engineering

1. Understand components of Bridges and its various types.

2. Understand site selection criteria and comprehend various forces acting on bridges.

3. Analyze bridge structures using different analysis technique.

4. Understand the importance of different types of bridge bearings.

614 BTCVE705D Introduction to Earthquake Engineering

1. Capture complexities in earthquake resistant design of structures.

2. Grasp nature of earthquake vibration and associated forces on structures.

3. Understand importance of designing the building to targeted seismic performance.

6.15 BTCVOE706E Town and Urban Planning

1. Understand town and urban planning and their essential attributes.

2. Identify elements of planning and regulations of the same.

3. Implement guidelines provided by standard authorities.

6.16 BTCVOE706F Tunneling and Underground Excavations

1. Understand types of tunnels and tunneling methods conforming to site conditions.

2. Investigate various tunneling operations and relevant machinery required.

3. Understand methods and operations of excavating large and deep tunnels.

4. Propose suitable tunneling and excavation methods to optimize the same.

6.17 BTCVL707 Design Drawing of RC and steel Structures

1. On completion of the course, student will be able to simulate a practical design requirement into a theoretical statement to solve mathematically to arrive at a safe economical and realistic feasible solution that can be executed.

6.18 BTCVL708 Professional Practice

- 1. Understand the specification drafting and framing rate analysis.
- 2. Carry out the estimates of various civil engineering structures.
- 3. Prepare valuation report of civil engineering structures.

Principal P.E.S.College of Engineering Aurangabad.

19

Principal P.E.S.College of Engineering Aurangabad.
P. E. S. College of Engineering, Aurangabad Department of Computer Science & Engineering Program outcomes, program specific outcomes and course outcomes

PROGRAM OUTCOMES

After completing four year graduate course of BTech (CSE) the students will be able to:

- 1. Understand and proficiently apply the knowledge of mathematics, relevant sciences to CSE, to design software solutions to the given problems.
- 2. An ability to design software & conduct their software simulations and testing to analyze and interpret the results produced and verify their online performance.
- 3. Will be able to design a software automation system for various application areas using efficient algorithms, the computer resources and components, to meet desired needs within realistic constraints such as economic, environmental, social, political, ethical, health and safety, manufacturing, and sustainability.
- 4. Will be able to Design software projects for multidisciplinary applications areas and will be able to maintain it on field.
- 5. An ability to identify, formulate the problem definitions for which the software solution can be designed and will be able to implement them.
- 6. Will be able to demonstrate commitment by developing professional softwares for various applications as per ethical standards and rules led by society.
- 7. Will be able to communicate with the corporate world effectively by implementing techniques for verbal and nonverbal communication skills taught in syllabus.
- 8. The computer Graduate will be able to understand impact of software solutions in a global economic, environmental and social context.
- 9. Will be able to design software solutions using recent algorithms and also continuously modify them as per the current needs of the society through lifelong learning and professional development.
- 10. Will be able to demonstrate knowledge of contemporary issues.
- 11. Show awareness of and ability to proficiently identify and apply project management tools and methodologies to the planning and execution of software projects leading to software.
- 12. Will be able to plan and use computer resources and other systems efficiently.

Program Specific Outcomes

1. Model computational problems by applying mathematical concepts and design solutions using suitable data structures and algorithmic techniques

2. Design and develop solutions by following standard software engineering principles and implement by using suitable programming languages and platforms

3. Develop system solutions involving both hardware and software modules.

4. Become socially responsible engineers with good leadership qualities and effective interpersonal skills.

5. Acquire domain knowledge to pursue higher education and research.

Course Outcomes:

Course	Course Outcomes
SY CSE PART-I	 Students will able to understand and proficiently apply the relevant sciences and scientific methods to Engineering Mathematics, to design solutions to complex problems. Students will able to identify interpret and paritically apprecise current developments
Engineering Mathematics-III	 Students will able to identify, interpret and "critically appraise current developments and advanced technologies and apply them to Engineering Mathematics. Students will able to determine analyses and proficiently apply theoretical and numerical analysis of phenomena to conceive, control and optimize the performance of Engineering Mathematics. Students will able to develop and implement creative and innovative approaches to problem solving.
SY CSE PART-I	 Student will be able to formulate problems precisely and solve the problems. Student will be able to apply formal proof techniques, and explain their reasoning clearly. Students can analyze basics knowledge gained by mathematical logic and apply them
DMS	 Students can analyze basics knowledge gamed by mathematical logic and apply mem. Use algorithms for suitable applications
SY CSE PART-I	1. To train the students with concept of microprocessor and computer architecture and organization
CAO	 To provide the knowledge of instruction set of 8086 and assembly programming. To analyze the memory operations
SY CSE PART –I OOP using C++	 Student will be able to understand the features of C++ supporting object oriented programming Student will be able to understand the relative merits of C++ as an object oriented programming language Student will be able to understand how to produce object-oriented software using C++ Student will be able to understand how to apply the major object-oriented concepts to implement object oriented programs in C++, encapsulation, inheritance and polymorphism
SY CSE PART –I Product Design Engineering	 With the inclusion of concepts of 3D design, sketching. Product manufacturing, digital designing, business communications, product design is the application of technology and designing knowledge in different product designing and manufacturing processes.
SY CSE PART-I Programming in Java	 The students will be able to apply object oriented features to real time entities. The students will be able handle exceptions & implement multithreaded programs. The students will be able implement database programming. The students will be able design & implement GUI with event handling The students will be able develop I/O & networking programs.

of Engin P.E.S.

SY CSE PART-I Python Programming	 Students will understand Python programming basics and paradigm. Students will understand python looping, control statements and string manipulations. Students will be made familiar with the concepts of GUI controls and designing GUI applications. Students will understand concepts of file handling, exception handling and database connectivity. Design and implement a program to solve a real world problem. Students will make database connectivity in python programming language.
SY CSE PART-I HTML & JavaScript	 Students will understand programming in HTML and JavaScript. Students will develop web applications using HTML. Student will be able to design console websites using HTML and JavaScript.
SY CSE PART-II Operating System	 Will be able to define, formulate problem definitions for designing various modules of operating system. Will be able to design the modules of operating system that meets the realistic constraints such as economic, environmental, health safety & sustainability. The student will be able to analyze use of existing OS (platform independent feature of operating system software), as well as design the operating system for multidisciplinary application areas. Will be able to analyze the impact of design of operating system on various aspects such as environmental, economic, social environment. Will be able to develop the algorithms or modify the existing algorithms to solve the problems in current designs as per the need of application.
SY CSE PART-II Design and analysis of Algorithms	 The student will be able to define, formulate problem definitions for designing algorithms. The student will be able to understand the syntax and design algorithms. The student will be able to use the various design methods and skills to solve the problem like TSP, Knapsack. The student will be able to describe divide and conquer paradigm and explain when an algorithmic design situation calls for it. Will be able to analyze graph algorithms and apply graph concept to model engineering problems. Will be able to design the algorithm that meets the realistic constraints such as Economic, Time constraint, Space constraint The student will be able to conclude which algorithmic method is better for given problem. The student will be able to modify the existing algorithms to solve the problems in current designs as per the need of application.

TY CSE PART-I Theory of computation	 Student will be able to define, formulate problem definitions for designing machines Student will be able to identify and formulate the problems in a Finite Automata and also verify the performance of a machine by giving the input. Student will be able to design Regular Expression for multidisciplinary application areas Student will be able to develop and implement creative and innovative approaches to problem solving Student will be able to build the techniques and skills to design syntactically correct Regular Languages using Context Free Grammar Student will be able to design TM for multidisciplinary application areas. Student will be able to build the programming technique for Turing machine
TY CSE PART-I Database Management System	 Will be able to define, formulate problem definitions for designing various modules database management system. Will be able to design the database system that meets the realistic constraints such as Economic, Environmental, Health Safety, and Sustainability. The student will be able to analyze existing databases for multidisciplinary application areas. Student will be able will be able to analyze the impact of design of database system on various aspects such as environmental, economic, social environment. Student will be able will be able to develop and modify the existing database systems to solve the Student will be able understand problems in current designs as per the need of application. Student will be able Plan, organize and use computer resources as well as manpower efficiently by developing efficient database applications. Knowledge of contemporary issues. Communicate effectively on both technical and general issues with peers, associates, 10. Clients and the general public to define the problem specification.
TY CSE PART-II Computer Network	 To understand fundamental concepts of computer networking and functionality of layered network architecture. To understand wireless and mobile networking concepts To apply networking concepts to various situations, classifying networks, analysing performance of computer network infrastructure.
TY CSE PART-II Compiler Design	 Will be able to define, formulate problem definitions for designing various types of compiler. Will be able to design programs using LEX, YACC tools for multidisciplinary application areas and will be able to maintain it on field. Will be able to use the techniques and skills to design a program by using compiler. Will be able to identify and formulate the problems in a program and also verify the performance of a program. Will be able to design the software program for various application areas using compiler construction tools, the computer resources and components, to meet the desired needs. Will be able to develop and implement creative and innovative approaches to problem solving.

Final Year CSE PART-I Digital Image Processing (Elective-VIII)	 Students should be able to understand digital image processing beyond the fundamental level. To study complete digital image processing steps. Students should be able to choose appropriate image processing algorithm to achieve desired result. Students should be able to properly implement DIP algorithms using modern computing tools Such as MATLAB, interpret and present the results.
Final Year CSE PART –I Elective 9- Cloud Computing	 To learn and understand Cloud Technologies To design, develop and deploy Cloud applications To get acquainted with the challenges and security aspects of Cloud Computing. To study Mobile Cloud Applications
Final Year CSE PART –II Software Engineering	 Will be able to use OOPS concepts, various computer architectures, languages for programming and UML to design software models. Will be able to define, formulate & analyze the problem definition also hardware, software & other computing requirements to design a software solution for it. Will be able to design software using software engineering phases to meet the desired needs of a client within the realistic constraints such as environmental ethical, economic, political, manufacturing, and sustainability. Will be able to design software projects in various application areas like business, research, commercial, banking internet, mobile applications and maintain it. Will develop the software as per software on world economy, social aspects. Will be able to plan organize software development process so that computer resourcesefficiently.

Principal P.E.S.College of Engineering Aurangabad.

Class: SYCSE

	Class: SYCSE SEM-III							ļ	P	C						P	so	כ	
			1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	4	5
1	BTBSC301	Engineering Mathematics -III	\checkmark	V		\checkmark		\checkmark		V	\checkmark	\checkmark			\checkmark	\checkmark	\checkmark		
2	BTCOC302	Discrete Mathematics		V	V	\checkmark		\checkmark	√	V	\checkmark		\checkmark						
3	BTCOC303	Data Structures	\checkmark	\checkmark		\checkmark	V	\checkmark		V	\checkmark	\checkmark			\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
4	BTCOC304	Computer Architecture & Organization	V		√	√	V	V	√		\checkmark	\checkmark	\checkmark	\checkmark	V	\checkmark			
5	BTCOC305	Digital Electronics & Microprocessors		V		\checkmark		V	√	V	\checkmark	\checkmark				\checkmark	\checkmark	\checkmark	\checkmark
6	BTHMC306	Basic Human Rights	\checkmark	\checkmark		\checkmark			V		\checkmark								
7	BTCOL307	Python Programming	\checkmark	V	V		V		√	V	\checkmark	\checkmark	\checkmark				\checkmark	\checkmark	\checkmark
8	BTCOL308	HTML and Javascript		\checkmark	\checkmark		\checkmark	\checkmark	V	V				\checkmark	\checkmark			\checkmark	
8	BTCOL309	Data Structures Lab	V	V	V			\checkmark	√		\checkmark	\checkmark		\checkmark		\checkmark	\checkmark		\checkmark
9	BTCOL310	Digital Electronics & Microprocessor Lab	V	V	V	\checkmark	V		√	V	\checkmark		\checkmark	\checkmark	V	\checkmark		\checkmark	\checkmark
10	BTCOF311	Field Training / Internship/Industrial Training Evaluations		V	V	V	V	V	V		\checkmark	\checkmark	\checkmark		V		V	\checkmark	

	Class: SYCSE SEM-IV								P	c						Ρ	so)	
			1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	4	5
1	BTCOC401	Design & Analysis of Algorithms	V																
2	BTCOC402	Probability & Statistics	V	V		\checkmark		V		V	V	\checkmark			V	V	\checkmark		
3	BTCOC403	Operating System		V		\checkmark	V	V	V	V		\checkmark	\checkmark	\checkmark	V	V	\checkmark		
4	BTCOE404	Elective-I Object Oriented Programming in C++ Object Oriented Programming in Java	V		V		V		V	V	V	V	V				V	V	V
5	BTCOE405	Elective-II Soft Skills and Personality Development		V	V		V			V		\checkmark	\checkmark	\checkmark	V	V	V	\checkmark	
6	BTXXC406	Product Design Engineering		V	V	\checkmark		V		V	V	\checkmark	\checkmark	\checkmark				\checkmark	V
7	BTCOL407	Design & Analysis of Algorithms Lab	v	V	V	V		V	V	V	V				V	V			V
8	BTCOL408	Introduction to Data Science with R		V	V	V			V	V		\checkmark	\checkmark		V		V	V	
9	BTCOL409	Object Oriented Programming Lab		V	V		V	V	V	V				\checkmark	V			\checkmark	
10	BTCOL410	Operating System Lab	V	V	V			V	V		\checkmark	\checkmark		\checkmark		\checkmark	\checkmark		
11	BTCOF411	Field Training / Internship/Industrial Training	V	V	V			V	V		V	\checkmark		\checkmark		V	V		

	Class: TYCSE SEM-V								P	C						Ρ	S	C	
			1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	4	5
1	BTCOC501	Database Systems		V		\checkmark		V	V	\checkmark	\checkmark	\checkmark				V	\checkmark	\checkmark	
2	BTCOC502	Theory of Computations	\checkmark	V		\checkmark			V		\checkmark	\checkmark	\checkmark	\checkmark	V	V	\checkmark		V
3	BTCOC503	Machine Learning	\checkmark	V	V		V		V	V	\checkmark	\checkmark	\checkmark				\checkmark	\checkmark	
4	BTCOE504	Elective – III Introduction to Research		V	V		V	V	V	v				\checkmark	V			V	V
5	BTCOE505	Elective – IV Business Communication	v	V	V			V	V		V	\checkmark		\checkmark		V	V		
6	BTCOC506	Competitive Programming-I	\checkmark	V		\checkmark	V	V	V				\checkmark	\checkmark			\checkmark		V
7	BTCOL507	Database System Laboratory		V	V		V	V	V	V				\checkmark	V			\checkmark	V
8	BTCOL508	Machine Learning Laboratory	V	V	V			V	V		V	\checkmark		\checkmark		V	√		
9	BTCOS509	Seminar	\checkmark	V		V	V	V	V				\checkmark	\checkmark			\checkmark		V
10	BTCOF411	Field Training / Internship / Industrial Training Evaluation	V	V		V	V	V	V				\checkmark	\checkmark			V		V

	Class: TYCSE SEM-VI							F	s	0						PI	ΞC)	
			1	2	3	4	5	6	7	8	9	10	11	12	1	2	3 4	4	5
1	BTCOC601	Compiler Design		V		\checkmark		\checkmark	V	V	\checkmark	\checkmark				√·	v -	\checkmark	
2	BTCOC602	Computer Networks	V	V		V			V		V	\checkmark	\checkmark	\checkmark	\checkmark	v٠	V		V
3	BTCOE603	Elective – V Human Computer Interaction	V	V	V		V		V	V	V	\checkmark	\checkmark		V		, ,	\checkmark	V
4	BTCOE604	Elective – VI Internet of Things		V	V		V	V	V	V	\checkmark	\checkmark		\checkmark	V		,	\checkmark	
5	BTCOE605	Elective – VII Consumer Behaviour	V	V	V			\checkmark	V		V	\checkmark		\checkmark		v	V		V
6	BTCOC606	Competitive Programming-II	\checkmark	V		\checkmark	V	\checkmark	V				\checkmark	\checkmark		-	V		
7	BTCOL607	(A) Internet of Things Laboratory	V	V		V	V	\checkmark	V		V		\checkmark	\checkmark			, ,	V	
8	BTCOL608	Computer Networks Laboratory	\checkmark	V		\checkmark	V	\checkmark	V		\checkmark		\checkmark	\checkmark			V		V
9	BTCOF609	Field Training / Internship / Industrial Training	\checkmark	V		\checkmark	V	V	V		\checkmark		\checkmark	\checkmark			, ,	V	

Class: Final CSE SEM-VII

РО	PSO
1 2 3 4 5 6 7 8 9 10 11 12	12345

Principal P.E.S.College of Engineering Aurangebod.

1	BTCOC701	Software Engineering	\checkmark		V		\checkmark	\checkmark	\checkmark	V	\checkmark				V	\checkmark	\checkmark		V
2	BTCOE702	Elective - VIII Fundamental of Digital Image Processing	V	V	V	V		V	V	V	V	\checkmark	\checkmark			V	V	V	
3	BTCOE703	Elective - IX Natural Language Processing	V	V		V	V		V		V	\checkmark	\checkmark	\checkmark	V	V	V		V
4	BTCOE704	Open Elective - X Design Thinking	V	V	V		V		V	V	V	\checkmark	\checkmark	\checkmark			V	\checkmark	
5	BTCOL705	Full Stack Development		\checkmark	V		\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		\checkmark	\checkmark	\checkmark			\checkmark	V
6	BTCOL706	System Administration	\checkmark	\checkmark	\checkmark			\checkmark	\checkmark		\checkmark	\checkmark		\checkmark		\checkmark	\checkmark		
7	BTCOL707	Elective – VIII Lab	\checkmark	\checkmark		\checkmark	\checkmark	V	\checkmark				\checkmark	\checkmark			\checkmark		V
8	BTCOL708	Elective – IX Lab		\checkmark	\checkmark		\checkmark	V	\checkmark	\checkmark				\checkmark	\checkmark			\checkmark	
9	BTCOP709	Project phase - I	\checkmark	V	V			\checkmark	\checkmark		\checkmark	\checkmark		\checkmark		\checkmark	\checkmark		V
10	BTCOF609	Field Training / Internship / Industrial Training	V	V		V	V	V	V				\checkmark	\checkmark			V		V

	Class: Final CSE SEM-VIII							I	PC)						Ρ	so	C	
			1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	4	5
1	BTCOE801	Elective – XI -(A) Deep Learning	V	V	V		V		\checkmark	\checkmark	V	\checkmark	~				V	V	
2	BTCOE802	Open Elective – XII- (A) Introduction to Industry 4.0 and Industrial Internet of Things	V	V	V		~	V	V	V	V	\checkmark	\checkmark		V		V	V	V
3	BTCOE803	Project phase - II (In-house) / Internship and project in the Industry	V	V	V		\checkmark		V	V	V	\checkmark	\checkmark		V		V	~	V

Principal P.E.S.College of Engineering Aurangebad.

People's Education Society's (Mumbai) COLLEGE OF ENGINEERING, AURANGABAD (MS)

P.E.S VISION: "The people's education society's objective is not merely go give education, but to give education in such a manner as to promote intellectual, moral and social democracy. This is what modern India needs and this is what all the well-wishers of India must promote."

INSTITUTE VISION:

To create technical manpower with global competitiveness, morality and social sense.

MISSION:

The P.E.S. College of Engineering is committed to create intellectual engineers having updated professional competencies to work in various domains.

The institute is committed to provide state-of-art infrastructure and learning environment with inbuilt continual development processes so as to build the individual having moral and social attributes leading them to compete globally.

PROGRAM NAME: ELECTRICAL ENGINEERING

PROGRAM VISION: To create competent technical manpower with moral and social sense in the field of electrical engineering.

PROGRAM MISSION:

The department of Electrical Engineering is committed to

- Provide state of art infrastructure and learning environment with continual development processes so as to build the individual having moral and social attributes.
- Create competent Engineers having updated professional competencies to work in various domains.

PROGRAM EDUCATIONAL OBJECTIVES:

- 1. To provide global level technical competency in students.
- To impart good citizenship qualities in the students so as to work as a responsible member of society.
- To develop professional leadership qualities in students to become a capable technocrat.

Dr. Chaudhari B.N. Protessor & Read Desertment of Electrical Engineering P.E.S. College of Engineering Aurangibad (M.S.)

PROGRAM OUTCOMES:

Lipon successful completion of this course it is expected that electrical graduate will

- Understand and proficiently apply the relevant sciences and scientific methods to electrical engineering, to design solutions to complex problems in power system, electrical machines, and control techniques.
- Identify & synthesize the constraints posed by economic factors, safety considerations, environment impacts & professional standards on electrical engineering practice & use them for professional judgments in solving the critical field problems for sustainable technological development of nation.
- Determine, analyze & proficiently apply theoretical & numerical analysis of phenomena to conceive, control & optimize the performance of electrical engineering systems used for different applications such as transportation, automobile, process automation, and in navigation.
- Understand: proficiently apply a system approach for electrical system design and addressing the broad contextual constraints, leading to sustainable development of global level electrical technologies and standards.
- Develop and implement creative and innovative approaches to enhance the reliability, efficiency, and economical aspect of electrical systems for sustainable improvement of electrical technologies.
- Use all fundamental knowledge of electrical engineering, science and mathematics to plan, organize and use resources efficiently to reduce the adverse effect on environment.

PROGRAM SPECIFIC OUTCOMES

PSO1. Graduates will demonstrate the ability to apply fundamental knowledge of mathematics, science, and domain knowledge of electrical circuits, fields, control systems, machines, power systems, electronics, programming, power electronics and drives, modern software tools to understand, analyze and design electrical systems.

PSO2. Graduates will be responsible ethical professional with understanding of society linkages and sensitivity towards environment.

PSO3. Graduates will communicate effectively, contribute to the teams, assume leadership, manage project and finance effectively and adapt to the changing needs stepping into self and lifelong learning, will communicate effectively, contribute to the teams, assume leadership, manage project and finance effectively and adapt to the changing needs stepping into self and lifelong learning.

Dr. Chaudhari B.N. Protester & Head Despitzent of Electrical Engineering

Course	Course Outcome:
SY EE	
PART-I	1. Students learn about the how to solve mathematical model with
Engineering	Laplace Transform and error functions and their applications.
Mathematics-III	 Gain knowledge of Finite and Infinite Fourier Transforms and applications.
	3. Familiarize with the concept of analytic function, C-R equations and its uses
	A Learn about Cauchy's theorem and its uses in complex integration
	Taylor's and Laurent's series in complex form
	5. Loops about Country Desidues theorem and contour interestions
DADTI	5. Learn about Calleny Residues metreri and contour integrations.
PARI-I	1. To review basic components of electric network.
Network Analysis and	2. To design and develop network equations and their solutions.
Synthesis	3. To apply Laplace theorem for electric network analyses
	4. To analyze AC circuit.
PART-I	1. To introduce properties of fluid and hydraulic measurement.
Fluid Mechanics and	2 To understand dynamics of fluid flow.
Thermal Engineering	3. To understand basic concepts of IC engines To understand concept
	of refrigeration and air conditioning
PART-1	1. To understand philosophy of measurement.
Measurement and	2. To understand different methods analog and digital measurement.
Instrumentation	3. To study principle of construction and operation of different transducer and dismay methods.
PART-I	1. To study about crystal structure
Electrical Engineering	2. To understand magnetic material structure.
Materials	3. To study about conducting and superconducting materials
	4. To study dielectric and Nano materials.
PART-I	1. To study concept of time value of money.
Basic Human Rights	2. To study about demand in detail.
	3. To understand Meaning of Production and factors of production
	4. To understand dif. Concent about marker

Dr. Constantin of Mand Professor & Mand Department of Exercised Engineering MES. College of Engineering Association (M.S.)

PART-II Electrical Machine-I	1. To study diff. types, construction and operating principle of diff. types of electrical machines.
PART-II POWER SYSTEM-I	 To Understand basic operation of power system. To power system components and their characteristics. To Understand basic Load and Energy survey.
PART-II Electrical Installation and Estimation PART-II Numerical Methods and	 To prepare estimates and costing of electrical installations of power system. To understand procedures of contracting and purchase To study and understand MATLAB programming. To review mathematical concepts.
Programming PART-II Product Design Engineering	 To develop computer program for linear and nonlinear equations. Create simple mechanical or other designs Create design documents for knowledge sharing Manage own work to meet design requirements Work effectively with colleagues
PART-II Solid State Devices	 To study construction and characteristics of solid state devices. To apply operational amplifier models in circuits employing negative feedback. To design electronics circuit using Timer IC and voltage regulators. To perform analysis of amplifiers using small signal models for the circuit elements. To calculate the frequency response of circuits containing BJT, Op- Amp etc
PART-IJ Introduction to Non- Conventional energy sources	 To review energy scenario. To understand basic concepts , construction and operational features of different non-conventional sources

.

Or. Lines theri B.N. Normal & Hent Deserves of Electrical English

Course TY EE	Course Outcome:
PART-I	1. To study different methods of speed control of AC and DC motor.
Electrical Machine-	2. To study importance and procedure of different performance test on AC and DC motor.
	3. To determine different operating characteristics of AC and DC machines
PART-I	1. To study different parameters of power system operation and control
Power System-II	2. To study load flow and Diff. methods of reactive power control.
	3. To understand diff, methods of fault analysis and stability study
PART-I	1. To know the architecture of 8085 and 8051.
Microprocessor and	2. To understand interfacing and interrupt features of 8085 and 8051.
micro Controller	3. To develop program for basic applications.
PART-I	1. To understand value of education and self-development.
Value Education,	2. To develop good values and character.
Human Rights and	3. To know Human right and legislative procedure
Legislative	
Procedures	
PART-I	1. Follow safe practices to prevent accidents while using electrical
Testing and	equipment.
Maintenance of	2. Prepare maintenance schedules for electrical equipment.
Electrical	3. Maintain rotating electrical machines.
equipment.	4. Maintain single phase and three phase transformers.
	5. Maintain insulation systems of electrical equipment.
PART-I	1. To review basic components of power system, energy sources
Power Plant	2. To understand principle of construction and operation of different
Engineering.	conventional power plants

Characteriari B.N. Performer & Head Bellastronet of Theorem Engenetrony ME.R. Callege of Societations ME.R. Callege of Societations

PART-II Control System	 To understand the behavior of nonlinear control system. To design and analyze PID controller. To understand and analyze state variable technique. To design and analyze suitable control system for engineering application.
PART-II Principles of Electrical Machine Design	 To understand principles of electric machine design. To design different components of electric machine. To design Transformer and understand CAD and use it for transformer design.
PART-II Power Electronics	 To review principle of construction, operation and characteristics of basic semiconductor devices. To understand and analyze performance of controlled and uncontrolled converters. To understand and analyze performance of DC to DC converters. Dc to AC converters. To understand and analyze performance of AC voltage controllers.
PART-II Industrial automation and Control	 To understand construction and working principle of different industrial measurement systems. To understand new trends in industrial process control.
PART-II Switch Gear and Protection	 To understand principles of protective relaying. To understand principle of construction, operation and selection of different type of circuit breaker used in power system. To understand different protection schemes used in power system operation

9

2

Dr. Chaudhart B.K. Performer & Next Destrument of Electrical Engineering P.E.E. Compto of Englishering Recordshield (M.S.)

Course BE EE	Course Outcome:				
PART-I	1. Explain the fundamental concept of power system.				
Power System	2. Design the mathematical model of synchronous machine.				
Operation & Control	3. Design the mathematical model Excitation system and speed				
	governing system.				
	4. Analyze the transient stability of power system using swing				
	equation and equal area criteria.				
	5. Analyze the economic operation of power system.				
	6. Explain the methods of Voltage control.				
PART-I	1. Explain the breakdown process in sislid, liquid, and gaseous				
High Voltage	materials				
Engineering	2. Analyze methods for generation and measurement of High				
	Voltages and Currents (both ac and dc)				
	3. Describe the phenomenon of over-voltage and choose appropriate				
	insulation coordination levels based on 18 & IEC Standards.				
PART-1	1. Analyze the dynamics of Electrical Drives system.				
Electrical Drives	2. Use various control techniques for controlling the speed of AC and				
	DC motors. Analyze the AC and DC drives.				
	3. To Select/recommend the appropriate Drive according to the				
	particular applications. State the recent technology of AC and DC				
	drive				
PART-I	I. Demonstrate construction, working principle, and application of				
pecial Purpose	various types of special nurpose electrical machines				
lectrical Machines	2. Select a special Machine for a particular application				
	3. Demonstrate behavior of induction appreciation				
	machine				
ADT	1 To understand investment of				
MDC Tenermission	1. To understand importance, configuration and types of HVDC				
ed FACTS	Transmission.				
NO PALIS	2. To analyst the operation of HVDC converter, system control and				
	protection.				
	3. To understand the concept of FACTS, their role, type and				
	functionality.				
	4. To analyze the operation of static series and shunt compensator				

Dr. Chaudhert B.N. Protosor & Hend Department of Electrical Engineering HE.S. College et Regissering

Þ

PART-II	1. Knowledge of theory and practice related to Industrial IoT Systems.
Introduction To	2. Ability to identify, formulate and solve engineering problems by using
Industry 4.0 And	Industrial IoT.
Industrial Internet Of	3. Ability to implement real field problem by gained knowledge of
Things	Industrial applications with IoT capability.
PART-II	1.Evaluate an idea and assess the market
PART-II	1 Evaluate an idea and assess the market
Entrepreneurship	2. Explore the risks and rewards of entrepreneurship
Essentials	3. Leverage experiments to validate concepts and refine your business

ark

Dr. Cristionari B.N. Professor 5, Head Destatement of Electrical Engineering Stransabod (N.S.)

Mapping

,

	-	Course Code	Course	1	2	3	4	5	6	PSO1	PSO2	PSO3
		BTBSC301	Engineering Mathematics-III		1	1			1	×.	N	X
		BTBSC302	Network Analysis And Synthesis	Ń	¥.		V	N		¥.	×	Y
	1 - 1	BTBSC303	Fluid Mechanics And Thermal Engineering		V	V		V		N.	×	V
	testes	8T85C304	Measurement And Instrumentation	٧	2		4			V	V	SW//
	Seu	BTEEE305A	Electrical Engineering Materials	N		×.	V			٧	×	
-		BTHNI3401	Basic Human Rights	N.	N.	V	V			Ŷ	v	V
5		STEEC401	Electrical Machine-I	V.	V	1	V			V.	v	A.
2		BTEEC402	Power System-I		N			N	X	- V.	Ý	V
Secon	_	BTEEC403	Electrical Installation And Estimation	N		v	V.			v	×	V
	-	STEEC404	Numerical Methods And Programming		N.	V			×	¥0	X	.√.
	mente	BTEEC405	Product Design Engineering	V		×		4		- M	¥	v
	S.	STEEE-406A	Solid State Devices	V	N	1	X			¥.	Ń	V
		BTEEDE407-B	Introduction To Non-Conventional Energy Sources		4	V		*	V	v	V	. V
		BTEECS01	Electrical Machine- II		¥		V		V	V	V	٧
		BTEEC502	Power System-II	V				V	N	v.	V	V.
air .	ester - 1	BTEEC503	Microprocessor And Micro Controller	V	V		4			V.	v	- V
Third Yo Seme	Sem	BTEECS04	Value Education, Human Rights And Legislative Procedures		V			V	V	v	¥	V
		BTEEE505	Testing And Maintenance Of Electrical Equipment	×		X	Y			*	V	×
		8TEEOESO6	Power Plant Engineering		1	1	T		1	N	×	V
	1	BTEEC601	Control System	1		10	ł	3	1	N		N
		BTEEC602	Principles Of Electrical Machine	1	1	I	1	1		4	V	V

Dr. Chaudhart B.N. preterer 5 Head preterer of Engineering

_	TH	BTEEC603	Power Electronics		V	1		1	V	N	1	V
1	er - I	BTEEE604	Industrial Automation And Control	N	V		V			4	N	1
	Semest	BTEEC605	Switch Gear And Protection		1	×		N		N	N	×
		BTEEC701	Power System Operation & Control		1	V		2	×	N	~	×.
		BTEEC702	High Voltage Engineering	V	X		~	A		V	V	Ň
ear ter - I		BTEEC703	Electrical Drives	N	V	1	N	N		N	¥	N
	ster	BTEEE704	Special Purpose Electrical Machines		V	V		N	V	N	- 14:	N
Y IBL	Seme	BTEEE705	HVDC Transmission and FACTS		N	Y		N	*	4	V	N
-		BTEES709	Seminar	N	X		V	V		A.	N	N
		BTEEP710	Project Part -1	N	V		7	V		V	V	V
tester - 11	τ - 11		Introduction To Industry 4.0 And Industrial Internet Of Things	×	×		V	2		1	×	1
	neste		Entrepreneurship Essentials		V	V		N		V	N	V
	Sen	BTEEP803	Project	N	N		X	N		V	N	V

The

1

Dr. Chaudhart B.N. Professor & Hest Department of Electrical Engineering RES, College of Engineering Aurangabad (M.S.)

Department of Electronics & Telecommunication Engineering

Vision of Institute

To create a sound technical manpower with global competitiveness, morality and social sense.

Mission of Institute

- 1. To provide state of art technical infrastructure and motivate students to realize their own potential.
- 2. To provide an embellished academic and congenial environment to students for a complete learning experience.
- 3. To promote intellectual, moral & social democracy to ensure all round development of the students.

Vision of Department

To be the center of excellence promoting and providing a platform for preparation of globally competitive graduates with proficiency levels with practice and research abilities.

Mission of Department

- 1. To train and educate students as global citizen to become entrepreneurs in their chosen fields.
- 2. To promote innovative ideas of the students so as to develop sound technocrats.
- 3. To impart social responsibilities & ethical foundation in the mind of students.

Ene

<u>Program Educational Objectives :</u>

- 1. Graduates will able to succeed in positions in engineering practice or research, and in other fields they choose to pursue.
- 2. Graduates will become a responsible member of society.
- 3. Graduates will be leaders, both in their chosen profession and in other activities.
- 4. Graduates will address the complexities of real life engineering problems and be able to formulate solutions that are technically sound, economically feasible & sustainable.

of Engineerin

nesbae

Program Outcomes:

Upon successful completion of this course it is expected that electronics graduate will be able to:

- a. Understand and proficiently apply the relevant sciences & scientific methods to Electronics engineering to design solutions to complex problems in electronics systems, electronic circuits & control processes.
- b. Identify, interpret & critically appraise current developments, advanced technologies and apply them to electronic engineering field to enhance reliability and efficiency of electronics based systems, components and programs.
- c. Identify and synthesize the constraints posed by economic factors, safety considerations, environmental impacts and professional standards on Electronics engineering practices and use them for professional judgments in solving the critical field problems for sustainable technological development of nation.
- d. Determine, analyze and proficiently apply theoretical and numerical analysis of Phenomenon to Conceive, control & optimize the performance of Electronics engineering systems used for different applications such as in navigation, automobiles, transportation, and automation.
- c. Identify and critically evaluate the performance of a electronics engineering systems in terms of economics, safety, and social and physical environment and implement approaches to minimize any adverse impact leading to sustainable development of society.
- d. Understand and proficiently apply a systems approach for electronics system design and addressing the broad contextual constraints, leading to sustainable developments of global level electronics technologies and standards.
- g. Show awareness and ability to proficiently apply project management tools and methodologies to the planning and execution of projects leading to electronics engineering solutions of professional standards.
- e. Develop & implement creative and innovative approaches to enhance the reliability, efficiency and economical aspect of electronics systems for sustainable improvement of electronics technologies.
- i. Communicate effectively on both technical and general issues with peers, associate, clients and the general public to find solutions using technical proficiency.
- j Operate effectively and professionally within a team environment to solve complex problems of analyze, design and development of electronics systems.
- k. Use all fundamental knowledge of electronics engineering, sciences and mathematics to plan, organize and use resources efficiently to reduce adverse effect on environments.

Subject: Applied Digital Signal Processing (ADSP)

Course Objectives:

- 1. This course will introduce the basic concepts and techniques for processing signals on a computer.
- 2. By the end of the course, students will be familiar with the most important methods in DSP, including digital filter design, transform-domain processing and importance of Signal Processors.
- 4. The course emphasizes intuitive understanding and practical implementations of the theoretical concepts.
- 5. To produce graduates who understand how to analyze and manipulate digital signals and have the fundamental Mat lab programming knowledge to do so.

Course Outcomes:

- CO 1: Able to know different digital signal, filter techniques and it's algorithms.
- CO 2: Able to know multirate signal processing like interpolation and Decimation.
- CO 3: To enhance the knowledge of polyphase filter structures and two channel quadrature mirror filter bank.
- CO 4: Need of Adaptive filter, its main components and its algorithms.
- CO 5: Able to design Lattice structures AR, MA & ARMA.
- CO 6: Able to represent & calculate the characterization of random signals.
- CO 7: Ability to estimate autocorrelation and power spectrum of random signals (Bartlett window & Welch Method)
- CO 8: Ability to know different architecture of DSPs and floating & fixed point representations.
- CO 9: Case study of TMS320C54XX and introduction of SHARRC processor.
- CO 10: Applications of DSP (Ex. Biomedical, Audio-Video systems, Radar System etc.)

Mapping of Mission keywords & PEO:

Sr. No.	Keywords	PEO-I	PEO-II	PEO-III	PEO-IV
1.	State of art technical infrastructure	х		x	х
2.	Complete learning experience	х	х	х	х
3.	All round development	х		х	х

Alignment of POs & COs:

$\operatorname{PO}_{CO} \to$	1	2	3	4	5	6	7	8	9	10
↓ a	Х		Х				X			Х
b					Х					
c			Х		Х	Х		Х	Х	Х
d	Х	Х		Х	Х					
e		Х				Х			Х	
f			Х			Х			Х	Х
g		Х			Х					
h	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
i		Х		Х		Х	Х		Х	
j				Х	Х		Х		Х	
k	Х	Х	Х	Х						Х

Principal P.E.S.College of Engineering Aurangabad.

Syllabus:

Applied Digital Signal Processing (ADSP)

Multirate Signal Processing :

Sampling rate reduction: Decimation by integer factor, sampling rate increase: interpolation by integer factor, sampling rate conversion by non integer factors, Multistage decimation and multistage interpolation, polyphase filter structures, two channel quadrature mirror filter bank.

Adaptive Filters:

Need of adaptive filters, adaptive filter as noise cancellation, configuration of adaptive filters, main components of adaptive filters, adaptive algorithms: LMS adaptive algorithms and implementation, recursive least square algorithms.

UNIT – III

Linear Prediction and optimum linear Filters:

Lattice structures, AR, MA, & ARMA, forward & backward linear prediction, different approaches for LPCs: Autocorrelation method, covariance method, Lattice structure method.

Power Spectrum Estimation:

Characterization of random signals: review of deterministic signals, random signals, correlation function, power spectra, DT random signals, Estimation of autocorrelation and power spectrum of random signal, Non parametric method for power spectrum estimation: Bartlett window Welch Method.

UNIT - V

Architectures of DSPs:

Different types of architectures of DSPs, circular buffering, MAC unit, Barrel shifter, special instruction on chip memory, fixed and floating point representations, selections of DSPs, case study of TMS320C54XX, Implementation of basic algorithms like FIR, IIR filters. Introduction to SHARC processor, VLSI algorithms of DSP algorithms.

Applications of DSPs:

Applications of multirate signal processing, application of adaptive filters in biomedical (EEG, ECG), radar speech and telephone. Applications of DSP in audio system, Image processing and communication.

of Engineerin

UNIT – VI

UNIT – II

UNIT – I

Lesson Plan:

Unit I: Multirate Signal Processing

Pre requisite	Chapter Content	Teaching Plan	Objective
	Sampling rate reduction:	Study of different	1. To know Sampling
Basics of	Decimation by integer	digital signal, filter	rate reduction and
Multirate	factor, sampling rate	techniques and it's	sampling rate increase
Signal	increase: interpolation by	algorithms	by integer factor.
Processing	integer factor, sampling	Decimation and	2. To Calculate
	rate conversion by non	interpolation by integer	sampling rate
	integer factors,	factor.	conversion by non
	Multistage decimation	Multistage decimation	integer factors.
	and multistage	and multistage	3. Able to know
	interpolation, polyphase	interpolation.	difference between
	filter structures, two	What are polyphase	general sampling rate
	channel quadrature	filter structures?	conversion and
	mirror filter bank.	What is Two channel	multistage conversion.
		quadrature mirror filter	4. To know polyphase
		bank?	filter structures and
			two channel
			quadrature mirror filter
			bank

Unit II: Adaptive Filters

Pre requisite	Chapter Content	Teaching Plan	Objective
	Need of adaptive filters,	Study need of adaptive	1. Able to know
Basics of	adaptive filter as noise	filters.	adaptive filter and its
Adaptive	cancellation,	Discussion of adaptive	use.
Filters	configuration of adaptive	filter as noise	2. To configure
	filters, main components	cancellation	adaptive filters.
	of adaptive filters,	Configuration of	3. Should be able to
	adaptive algorithms: LMS	adaptive filters	know main
	adaptive algorithms and	Discussion of main	components of
	implementation, recursive	components of	adaptive filters.
	least square algorithms.	adaptive filters	4. Able to analyze and
		What is adaptive	generate algorithms of
		algorithms: LMS	adaptive filters.
		adaptive algorithms	5.To know different
		Implementation of	algorithms of adaptive
		recursive least square	filters like LMS and
		algorithms.	recursive least square
		÷	algorithms.

UNIT-III: Linear Prediction and optimum linear Filters

Pre requisite	Chapter Content	Teaching Plan	Objective		
	Lattice structures, AR,	What is Lattice	1. To know about		
Basics of	MA, & ARMA, forward	structure?	lattice structure and		
Prediction and	& backward linear	What are AR, MA, &	AR,MA & ARMA.		
Optimization,	prediction, different	ARMA?	2. Able to predict		
then	approaches for LPCs:	forward & backward	linear and optimum		
Linear	Autocorrelation method,	linear prediction	linear filters.		
Prediction and	covariance method,	Study different	3.Able to aware about		
optimum linear	Lattice structure method.	approaches for LPCs	different approach for		
Filters		Autocorrelation	LPCs like		
		method, covariance	autocorrelation,		
		method, Lattice	covariance and lattice		
		structure method.	structure method.		

UNIT-IV: Power Spectrum Estimation

Pre requisite	Chapter Content	Teaching Plan	Objective
	Characterization of	Study of	1. Able to characterize
Power	random signals: review	characterization of	the different types of
Spectrum	of deterministic signals,	different types of	random signals.
Estimation	random signals,	random signals.	2. To estimate
	correlation function,	Correlation function,	autocorrelation and
	power spectra, DT	power spectra, DT	power spectrum of
	random signals,	random signals	random signal.
	Estimation of	What is estimation of	3.To analyze
	autocorrelation and	autocorrelation and	parametric method
	power spectrum of	power spectrum of	method for power
	random signal, Non	random signal	spectrum estimation
	parametric method for	Discussion of non	like Bartlett window
	power spectrum	parametric method for	Welch Method
	estimation: Bartlett	power spectrum	
	window Welch Method.	estimation:	
		Bartlett window Welch	
		Method	

rincipal P.E.S.College of Engineering Aurangabad.

UNIT-V: Architectures of DSPs

Pre requisite	Chapter Content	Teaching Plan	Objective
	Different types of	Study of Different	1. Able to know basic
Basic	architectures of DSPs,	types of architectures	architecture of DSP as
architecture of	circular buffering, MAC	of DSPs.	well as different types
DSP	unit, Barrel shifter,	Discussion of circular	of architectures of
	special instruction on	buffering, MAC unit,	DSPs.
	chip memory, fixed and	Barrel shifter, special	2. Idea about circular
	floating point	instruction on chip	buffering, MAC unit,
	representations,	memory	Barrel shifter, and
	selections of DSPs, case	What are fixed and	special instruction on
	study of	floating point	chip memory should be
	TMS320C54XX,	representations &	clear. 3. Should know
	Implementation of basic	selections of DSPs?	difference between
	algorithms like FIR, IIR	Case study of	fixed and floating point
	filters. Introduction to	TMS320C54XX	representations.
	SHARC processor, VLSI	Implementation of	4. Able to know
	algorithms of DSP	basic algorithms like	TMS320C54XX as
	algorithms	FIR, IIR filters	well as all types of
		Introduction to	DSPs.
		SHARC processor,	5. To analyze VLSI
		VLSI algorithms	algorithms of DSP.

UNIT-VI: Applications of DSPs

Pre requisite	Chapter Content	Teaching Plan	Objective
	Applications of multirate	Study of roll of DSPs in	1. Able to know Study
Applications of	signal processing,	different field.	of roll of DSPs in
DSPs	application of adaptive	What are the	different field
	filters in biomedical	applications of	2. Able to know
	(EEG, ECG), radar speech	adaptive filters in	applications of
	and telephone.	biomedical (EEG, ECG)	adaptive filters in
	Applications of DSP in	Applications in radar	biomedical (EEG, ECG)
	audio system, Image	speech and telephone	3. Applications in radar
	processing and	What are the	speech and telephone
	communication.	applications of DSP in	4. Applications of DSP
		audio system, Image	in audio system, Image
		processing and	processing and
		communication?	communication.

Sege of d

Principal P.E.S.College of Engineering Aurangabad.

Course Objectives For TY ETC (PART I I 2020-21)

Sr.No. Subject Code **Course Objectives** Course Name 1 Antennas and 1. To understand the applications of BTETC601 Wave electromagnetic engineering. Propagation 2. To formulate and solve the Helmholtz wave equation and solve it for Uniform Plane Wave. 3. To analyze and understand the Uniform plane wave propagation in various media. 4. To solve the electric field and magnetic fields for a given wire antenna. 2 Computer Network 1. To develop an understanding of BTETC602 & Cloud modern network architectures Computing from a design and performance perspective. 2. To introduce the student to the major concepts involved in widearea networks (WANs), local area networks (LANs) and Wireless LANs (WLANs). 3. To provide an opportunity to do network programming 4. To provide a WLAN measurement ideas. 3 1. An ability to use current **Digital Image Processing** BTETC603 techniques, skills. and tools necessary for computing practice with an understanding of the limitations 4 BTETPE604C **Power Electronics** 1.To introduce students to Program different power devices to Elective study their construction, of characteristics and turning on circuits.

SEM VI

Principal E.S.College of Engineering Aurangabad.

2.To give an exposure to students of working & analysis of controlled rectifiers for different loads, inverters, DC choppers, AC voltage controllers and resonant converters. 3.To study the different motor power drives, various electronics applications like UPS, SMPS, etc. and some protection circuits. 5 BTETOE605A Digital System Design 1. The concept and theory of Open digital Electronics are needed Elective in almost all electronics and telecommunication engineering fields and in many other engineering and scientific disciplines as well. 2. The main objective of this course is to lay the foundation for further studies in areas such communication, VLSI, as computer, microprocessor etc. One of the most important reasons for the unprecedented growth of digital electronics is the advent of integrated circuit. 3. This course will explore the basic concepts of digital electronics. 6 1. To develop analytical abilities. Employability & BTHM606 Skill Development 2. To develop communication skills. 3. To introduce the students to skills necessary for getting, keeping and being successful in a profession.

4.To expose the students to leadership and team-building skills.

Course Objectives For TY ETC (PART I 2020-21)

SEM V

Sr.No.	Subject Code	Course Name	Course Objectives
1	BTEXC501	Electromagnetic Field Theory	1. Learners can be able to explore their knowledge in the area of EM Waves and its analysis.
			2. To learn basic coordinate
			system, significance of
			divergence, gradient, curl and its
			applications to EM Waves.
			3. To understand the boundary conditions for different materials /surfaces.
			4. To get insight on finding
			solution for non-regular
			geometrical bodies using Finite
			Element Method, Method of
			Moments, Finite Difference Time
			Domain.
			5. To get the basics of microwave, transmission lines and antenna parameters.
			6. Students get acquainted with
			different physical laws and
			theorems and provide basic
			platform for upcoming
			communication technologies.
2	BTEXC502	Control System Engineering	1 To introduce the elements of
			control system and their modeling
1			using various Techniques.
			2. To introduce methods for
	ege of Engl		analyzing the time response, the
3			frequency response and the
(is			stability of systems.
	4.0.		

3.To introduce the concept of root locus, Bode plots, Nyquist plots.

4.To introduce the state variable analysis method.

5. To introduce concepts of PID controllers and digital and control systems.

6. To introduce concepts programmable logic controller.

1. To introduce basic concepts ofcomputer organization and toillustratethecomputerorganizationconceptsbyAssemblyLanguageprogramming.

2. То understand operating systems and how they work with the computer and students will understand the relationship between hardware and software machine specifically how organization impacts the efficiency of applications written in a high-level language.

3. Students will be able to make use of the binary number system to translate values between the number binary and decimal systems, perform basic to arithmetic operations and to machine code construct instructions and students will be able to design and implement solutions for basic programs using assembly language.

4. Students will be able to design logical expressions and

BTETC503

Computer Architecture

			corresponding integrated logic
			circuits for a variety of problems
			including the basic components of
			a CPU such as adders,
			multiplexers, the ALU, a register
			file, and memory cells and to
			explain the fetch- execute cycle
			performed by the CPU and how
			the various components of the
			data path are used in this process.
5	BTEXC504	Digital Signal Processing	1. To introduce students with transforms for analysis of discrete time signals and systems.
			2.To understand the digital signal processing, sampling and aliasing.
			3.To use and understand implementation of digital filters.
			4.To understand concept of sampling rate conversion and DSP processor architecture.
6	BTEXC505	5 Microcontroller and its Applications	1.Objective of this course is to
			introduce to the students the
			fundamentals of microcontroller.
			2. After learning Microprocessor
			course, students will get
			advantage to pursue higher
			studies in Embedded Systems or
			employment in core industries.
			3. The learner can microcontroller
e9e	a Braineeri		design based systems and thus can
3			become successful entrepreneur
Jol			and meet needs of Indian and
13	. 63		multinational industries.
			4. The students can design and
			develop processor which can be
		MI	used in Robotics, Automobiles,
	***	Principal S.College of Engineering Aurangabad.	Space and many research areas.

7

BTEXPE506D Introduction to MEMS

Empiricaria

5.The learners will acquaint optimization skills and undergo concepts design metrics for embedded systems.

6.The students will get acquainted with recent trends in microcontroller like pipelining, cache memory etc.

7.To understand the applications of Microcontrollers.

8. To understand need of microcontrollers in embedded system.

9.To understand architecture and features of typical Microcontroller.

10. To learn interfacing of real world input and output devices.

11.To study various hardware and software tools for developing applications.

1. The objective of this course is to make students to gain basic knowledge on overview of MEMS (Micro electro Mechanical System) and various fabrication techniques.

2. This enables them to design, analysis, fabrication and testing the MEMS based components and to introduce the students various opportunities in the emerging field of MEMS.

3. This will enables student to study applications of microsensors and micro-actuators, various MEMS fabrication technologies, MEMS-specific design issues and constraints,

Dynamics and modeling of microsystems, getting access to fabrication and testing in academia and industry.

Course Objectives For SY ETC (PART I 2020-21)

SEM III

Sr.No.	Subject Code	Course Name	Course Objectives
1	BTBSC301	Engineering Mathematics-III	1. Linear differential equations of
			higher order using analytical
			methods and numerical methods
			applicable to Control systems and
			Network analysis.
			2. Transforms such as Fourier
			transform, Laplace transform and
			applications to Communication
			systems and Signal processing.
			3.Vector differentiation and integration required in Electromagnetics and Wave theory.
2	BTEXC302	Analog Circuits	1. To understand characteristics of IC and Op-Amp and identify the internal structure.
			2. To introduce various manufacturing techniques.
			3. To study various op-amp parameters and their significance for Op-Amp.
-	1		4. To learn frequency response,
19°	almeering.		transient response and frequency
8			compensation techniques for Op-
5.7			Amp.
			5. To analyze and identify linear and nonlinear applications of Op-Amp.
			6 To understand functionalities of PLL.
3	BTEXC303	Electronic Devices & Circuits	1. To introduce semiconductor

			devices FET and MOSFET, their
			characteristics, operations,
			circuits and applications
			2.To introduce concepts of both positive and negative feedback in electronic circuits
			3.To analyze and interpret FET
			and MOSFET circuits for small
			signal at low and high frequencies
			4.To simulate electronics circuits
			using computer simulation
			software and verify desired results
			5.To study the different types of voltage regulators.
4	BTEXC304	Network Analysis	1.To learn about the basic laws of
			electric circuits as well as the key
			fundamentals of the
			communication channels, namely
			transmission lines.
			2. To understand the need of simplification techniques of complicated circuits
			3.To learn about the
			comprehensive insight into the
			principle techniques available for
			characterizing circuits, networks
			and their implementation in
			practice.
			4.To learn about the use of
			mathematics, need of different
			transforms and usefulness of
			differential equations for analysis
			of networks.
5	BTEXC305	Digital Logic Design	1. To acquaint the students with
	OF OF EN		the fundamental principles of two-
	0		valued logic and various devices
			used to implement logical
	in de bo		aller

Principal P.E.S.College of Engineering Aurangebad.
operations on variables.

2. To lay the foundation for further studies in areas such as communication, VHDL, computer.

Course Objectives For SY ETC (PART I 2020-21) SEM IV

Sr.No.	Subject Code	Course Name	Course Objectives
1	BTEXC401	Electrical Machines and Instruments	 Model and Analyze the performance of different types of DC machines Learn the applications of DC generators Analyze the performance of different types of DC motors Analyze the performance of different types of Sensors and Transducers Familiarize with the applications of DC machines To prepare students to perform the analysis of any electromechanical system. To empower students to understand the working of electrical equipment used in everyday life.
2	BTEXC402	Analog Communication Engineering	 To introduce the concepts of analog communication systems. To equip students with various issues related to analog communication such as modulation, demodulation, transmitters and receivers and noise performance. To understand the concepts of modulation and demodulation techniques of angle modulation (frequency and phase)
3	BTEXC403	Microprocessor	 1.Objective of this course is to introduce to the students the fundamentals of microprocessor 2After learning Microprocessor course, students will get advantage to pursue higher studies in Embedded Systems or employment in core industries. 3. The learner can design microprocessor based systems and thus can become successful entrepreneur and meet needs of Indian and multinational industries.

			 4. The students can design and develop processor which can be used in Robotics, Automobiles, Space and many research areas. 5. The learners will acquaint optimization skills and undergo concepts design metrics for embedded systems. 6. The students will get acquainted with recent trends in microprocessor like pipelining, cache memory etc. 7. To understand the applications of Microprocessors. 8. To learn interfacing of real world input and output devices. 9. To study various hardware and software tools for developing applications
4	BTEXC404	Signals and Systems	 To understand the mathematical description of continuous and discrete time signals and systems. To classify signals into different categories. To analyze Linear Time Invariant (LTI) systems in time and transform domains. To build basics for understanding of courses such as signal processing, control system and communication. To develop basis of probability and random variables
5	BTID405	Product Design Engineering	 Create simple mechanical or other designs Create design documents for knowledge sharing Manage own work to meet design requirements Work effectively with colleagues
6	BTBSC406	Numerical Methods and Computer Programming	 To prepare students for successful career in industries, for Post Graduate programmes and to work in research institutes. To understand different numerical techniques used for solving algebraic and transcendental equations. To understand numerical methods to solve a system of linear equations. To understand numerical integration and differentiation techniques. To understand various difference operators and interpolation techniques.

6. To understand object-oriented programming fundamentals and features.7. To mold students professionally by course contents and sufficient problem solving and programming exercises and to acquaint

them with different types of numerical techniques and programming concepts

Course Objectives For BE ETC (PART I 2020-21)

		SEM	
Sr.No.	Subject Code	Course Name	Course Objectives
1	BTETC701	Digital Communication	 1.To understand the building blocks of digital communication system. To prepare mathematical background for communication signal analysis. To understand and analyze the signal flow in a digital communication system. To analyze error performance of a digital communication system in presence of noise and other interferences. To understand concept of spread spectrum communication system.
2	BTETPE702	Fiber Optic Communication	To learn the basic elements of optical fiber transmission link, fiber modes configurations and structures. - To understand the different kind of losses, signal distortion in optical wave guides and other signal degradation factors. - To learn the various optical source materials, LED structures, quantum efficiency, Laser diodes - Understand the functionality of each of the components that comprise a fiber-optic communication system: transmitter, fiber, amplifier, and receiver. - Understand the properties of optical fiber that affect the performance of a communication
u:S. Colle	in ameering	Principal P.E.S.College of Engineering Aurangabad.	 link. Understand basic optical amplifier operation and its effect on signal power and noise in the system. Apply concepts listed above to the design of a basic communication link.

To understand the embedded system design issues.

[–] To learn real time operating system concepts.

⁻ To understand the Embedded Linux environment.

- To learn embedded software development and testing process

ge of Engine rin a Aurangabad.

PES COLLEGE OF ENGINEERING, AURANGABAD ELECTRONICS AND TELECOMMUNICATION DEPARTMENT

Program Outcomes

At the end of the program the student will be able to:

PO 1	Apply the knowledge of mathematics, basic sciences, and mechanical engineering to the solution of complex engineering problems.
PO 2	Identify, formulate, research literature, and analyze complex mechanical engineering problems reaching substantiated conclusions.
PO 3	Design solutions for complex engineering problems and design mechanical system components that meet the specified needs.
PO 4	Use mechanical engineering research-based knowledge related to interpretation of data and provide valid conclusions.
PO 5	Create, select, and apply modern mechanical engineering and IT tools to complex engineering activities with an understanding of the limitations.
PO 6	Apply reasoning acquired by the mechanical engineering knowledge to assess societal and safety issues.
PO 7	Understand the impact of engineering solutions on the environment, and demonstrate the knowledge for sustainable development.
PO 8	Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.
PO 9	Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
PO 10	Communicate effectively on complex engineering activities with the engineering community and with society at large.
PO 11	Understand the engineering and management principles and apply these to the multidisciplinary environments.
PO 12	Recognize the need for life-long learning in the broadest context of technological change.

Program-Specific Outcomes (PSOs)

PSO 1	Make the students employable in engineering industries.
PSO 2	Motivate the students for higher studies and research.

pal ge of Engine P.F.S.Colk Auranesbad.

BTEXC302 Analog Circuits

Course Objectives: -

To understand characteristics of IC and Op-Amp and identify the internal structure. To introduce various manufacturing techniques.

To study various op-amp parameters and their significance for Op-Amp. -

To learn frequency response, transient response and frequency compensation techniques for Op-Amp.

To analyze and identify linear and nonlinear applications of Op-Amp. [–] To understand functionalities of PLL.

Course Outcomes:

On completion of the course, students will be able to:

- 1. Understand the characteristics of IC and Op-Amp and identify the internal structure.
- 2. Understand and identify various manufacturing techniques.
- 3. Derive and determine various performances based parameters and their significance for Op-Amp.
- 4. Comply and verify parameters after exciting IC by any stated method.
- 5. Analyze and identify the closed loop stability considerations and I/O limitations.
- 6. Analyze and identify linear and nonlinear applications of Op-Amp.
- 7. Understand and verify results (levels of V & I) with hardware implementation.
- 8. Implement hardwired circuit to test performance and application for what it is being designed.
- 9. Understand and apply the functionalities of PLL.

BTEXC303 Electronic Devices & Circuits

Course Objectives:

1. To introduce semiconductor devices FET and MOSFET, their characteristics, operations, circuits and applications

- 2. To introduce concepts of both positive and negative feedback in electronic circuits
- 3. To analyze and interpret FET and MOSFET circuits for small signal at low and high frequencies
- 4. To simulate electronics circuits using computer simulation software and verify desired results
- 5. To study the different types of voltage regulators.

Course Outcomes:

On completion of the course, students will be able to:

- 1. Comply and verify parameters after exciting devices by any stated method.
- 2. Implement circuit and test the performance.
- 3. Analyze small signal model of FET and MOSFET.
- 4. Explain behavior of FET at low frequency.
- 5. Design an adjustable voltage regulator circuits.

BTEXC304 Network Analysis

Course Objectives: 1. To learn about the basic laws of electric circuits as well as the key fundamentals of the communication channels, namely transmission lines. 2. To understand the need of simplification techniques of complicated circuits 3. To learn about the comprehensive insight into

the principle techniques available for characterizing circuits, networks and their implementation in practice. 4. To learn about the use of mathematics, need of different transforms and usefulness of differential equations for analysis of networks.

5. To train the students for handling analog filter design through theory of NA along with practical, this is basic requirement of signal processing field.

Course Outcomes:

On completion of the course, students will be able to:

1. Apply knowledge of mathematics to solve numerical based on network simplification and it will be used to analyze the same.

2. Design passive filters and attenuators theoretically and practically. To apply knowledge for design of active filters as well as digital filters and even extend this to advance adaptive filters.

3. Identify issues related to transmission of signals, analyze different RLC networks.

4. Find technology recognition for the benefit of the society

BTEXC305 Digital Logic Design

Course Objectives:

1. To acquaint the students with the fundamental principles of two-valued logic and various devices used to implement logical operations on variables.

2. To lay the foundation for further studies in areas such as communication, VHDL, computer.

Course Outcomes:

On completion of the course, students will be able to:

1. Use the basic logic gates and various reduction techniques of digital logic circuit in detail.

2. Design combinational and sequential circuits.

3. Design and implement hardware circuit to test performance and application.

4. Understand the architecture and use of VHDL for basic operations and Simulate using simulation software.

BTHM3401 Basic Human Rights

Course Objectives:

1. To work for ensuring that basic human rights are respected everywhere.

2. To cooperate to avoid compromising on human rights for economic or political expediency

3. To recognize democratic institutions as a fundamental human right

4. To work towards the sovereignty and self-determination of entities with historical, cultural and ecological identity.

5. To actively engage with the Government of India and other countries to promote human rights education.

6. To bring diplomatic and commercial pressures on regimes that violates human rights, to ensure that they respect the basic rights of their citizens.

7. To keep the interests of disempowered communities foremost in all dealings with countries in which human rights violations occur

8. To develop a more distinctive and effective role for the International Court of Justice in the field of human rights

9. To promote a culture for educating the citizenry that cultivation and promotion of human rights culture is the sine qua non for the smooth functioning of the organs of a democratic State and for the kind of development that results into overall development of the society.

10. To train the young men and women for facing the challenges of the pluralistic society and the rising conflicts and tensions in the name of particularistic loyalties to caste, religion, region and culture

11. To study the effects of draconian laws and unlawful use of State's machinery and force by the enforcement agencies.

Course Outcomes:

On completion of the course, students will be able to:

1. Simply put, human rights education is all learning that develops the knowledge, skills, and values of human rights.

2. Strengthen the respect for human rights and fundamental freedoms.

3. Enable all persons to participate effectively in a free society.

4. Learn about human rights principles, such as the universality, indivisibility, and interdependence of human rights.

5. Learn about regional, national, state, and local law that reinforces international human rights law.

6. Learn and know about and being able to use global, regional, national, and local human rights instruments and mechanisms for the protection of human rights.

BTEXC401 Electrical Machines and Instruments

Course Objectives:

- 1. Model and Analyze the performance of different types of DC machines
- 2. Learn the applications of DC generators
- 3. Analyze the performance of different types of DC motors
- 4. Analyze the performance of different types of Sensors and Transducers
- 5. Familiarize with the applications of DC machines
- 6. To prepare students to perform the analysis of any electromechanical system.
- 7. To empower students to understand the working of electrical equipment used in everyday life.

Course Outcomes:

On completion of the course, students will be able to:

1. The ability to formulate and then analyze the working of any electrical machine using mathematical model under loaded and unloaded conditions.

- 2. The skill to analyze the response of any electrical machine.
- 3. The ability to troubleshoot the operation of an electrical machine.
- 4. The ability to select a suitable measuring instrument for a given application.

5. The ability to estimate and correct deviations in measurements due to the influence of the

instrument and due to the accuracy of the instrument.

BTEXC402 Analog Communication Engineering

Course Objectives:

1. To introduce the concepts of analog communication systems.

2. To equip students with various issues related to analog communication such as modulation, demodulation, transmitters and receivers and noise performance.

3. To understand the concepts of modulation and demodulation techniques of angle modulation (frequency and phase)

Course Outcomes:

On completion of the course, students will be able to:

1. Understand and identify the fundamental concepts and various components of analog communication systems.

2. Understand the concepts of modulation and demodulation techniques.

3. Design circuits to generate modulated and demodulated wave.

4. Equip students with various issues related to analog communication such as modulation, demodulation, transmitters and receivers and noise performance.

5. Understand the concepts of modulation and demodulation techniques of angle modulation (frequency and phase).

6. Explain signal to noise ratio, noise figure and noise temperature for single and cascaded stages in a communication system.

7. Develop the ability to compare and contrast the strengths and weaknesses of various communication systems.

BTEXC403 Microprocessor

Course Objectives:

1. Objective of this course is to introduce to the students the fundamentals of microprocessor.

2. After learning Microprocessor course, students will get advantage to pursue higher studies in Embedded Systems or employment in core industries.

3. The learner can design microprocessor based systems and thus can become successful entrepreneur and meet needs of Indian and multinational industries.

4. The students can design and develop processor which can be used in Robotics, Automobiles, Space and many research areas.

5. The learners will acquaint optimization skills and undergo concepts design metrics for embedded systems.

6. The students will get acquainted with recent trends in microprocessor like pipelining, cache memory etc.

7. To understand the applications of Microprocessors.

8. To learn interfacing of real world input and output devices.

9. To study various hardware and software tools for developing applications.

Course Outcomes:

1. Learner gains ability to apply knowledge of engineering in designing different case studies.

2. Students get ability to conduct experiments based on interfacing of devices to or interfacing to real world applications.

3. Students get ability to interface mechanical system to function in multidisciplinary system like in robotics, Automobiles.

4. Students can identify and formulate control and monitoring systems using microprocessors.

5. Students will design cost effective real time system to serve engineering solution for Global, social and economic context.

6. This course understanding will enforce students to acquire knowledge of recent trends like superscalar and pipelining and thus finds recognition of continuous updation.

7. Learn use of hardware and software tools.

8. Develop interfacing to real world devices.

BTEXC404 Signals and Systems

Course Objectives:

1. To understand the mathematical description of continuous and discrete time signals and systems.

- 2. To classify signals into different categories.
- 3. To analyze Linear Time Invariant (LTI) systems in time and transform domains

f Engineeri

4. To build basics for understanding of courses such as signal processing, control system and communication.

5. To develop basis of probability and random variables.

Course Outcomes:

On completion of the course, students will be able to:

1. Understand mathematical description and representation of continuous and discrete time signals and systems.

2. Develop input output relationship for linear shift invariant system and understand the convolution operator for continuous and discrete time system.

3. Understand and resolve the signals in frequency domain using Fourier series and Fourier transforms.

4. Understand the limitations of Fourier transform and need for Laplace transform and develop the ability to analyze the system in s- domain.

5. Understand the basic concept of probability, random variables & random signals and develop the ability to find correlation, CDF, PDF and probability of a given event.

BTID405 Product Design Engineering

Course Outcomes:

At the end of the course, students will be able to

- 1. Create simple mechanical or other designs
- 2. Create design documents for knowledge sharing
- 3. Manage own work to meet design requirements
- 4. Work effectively with colleagues.

BTEXC501 Electromagnetic Field Theory

Course Objectives: -

Learners can be able to explore their knowledge in the area of EM Waves and its analysis. ⁻ To learn basic coordinate system, significance of divergence, gradient, curl and its applications to EM Waves. ⁻

To understand the boundary conditions for different materials /surfaces.

To get insight on finding solution for non-regular geometrical bodies using Finite Element Method, Method of Moments, Finite Difference Time Domain.

To get the basics of microwave, transmission lines and antenna parameters.

Students get acquainted with different physical laws and theorems and provide basic platform for upcoming communication technologies.

Course Outcomes:

At the end of this course students will demonstrate the ability to

- 1. Understand characteristics and wave propagation on high frequency transmission lines
- 2. Carryout impedance transformation on TL
- 3. Use sections of transmission line sections for realizing circuit elements
- 4. Characterize uniform plane wave
- 5. Calculate reflection and transmission of waves at media interface
- 6. Analyze wave propagation on metallic waveguides in modal form
- 7. Understand principle of radiation and radiation characteristics of an antenna

BTEXC502 Control System Engineering

Course Objectives: -

To introduce the elements of control system and their modeling using various Techniques. – To introduce methods for analyzing the time response, the frequency response and the stability of systems. –

To introduce the concept of root locus, Bode plots, Nyquist plots. -

To introduce the state variable analysis method.

To introduce concepts of PID controllers and digital and control systems.

To introduce concepts programmable logic controller.

Course Outcomes:

At the end of this course, students will demonstrate the ability to

1. Understand the modeling of linear-time-invariant systems using transfer function and state-space representations.

2. Understand the concept of stability and its assessment for linear-time invariant systems.

3. Design simple feedback controllers.

BTETC503 Computer Architecture

Course Objectives: -

To introduce basic concepts of computer organization and to illustrate the computer organization concepts by Assembly Language programming.

To understand operating systems and how they work with the computer and students will understand the relationship between hardware and software specifically how machine organization impacts the efficiency of applications written in a high-level language.

Students will be able to make use of the binary number system to translate values between the binary and decimal number systems, to perform basic arithmetic operations and to construct machine code instructions and students will be able to design and implement solutions for basic programs using assembly language.

Students will be able to design logical expressions and corresponding integrated logic circuits for a variety of problems including the basic components of a CPU such as adders, multiplexers, the ALU, a register file, and memory cells and to explain the fetchexecute cycle performed by the CPU and how the various components of the data path are used in this process.

Course Outcomes: At the end of this course students will demonstrate the ability to

- 1. learn how computers work
- 2. know basic principles of computer"s working
- 3. analyze the performance of computers 4. know how computers are designed and built

5. Understand issues affecting modern processors (caches, pipelines etc.).

BTEXC504 Digital Signal Processing

Course Objectives: -

To introduce students with transforms for analysis of discrete time signals and systems.

To understand the digital signal processing, sampling and aliasing.

To use and understand implementation of digital filters.

To understand concept of sampling rate conversion and DSP processor architecture.

Course Outcomes:

Is a

- After successfully completing the course students will be able to
- 1. Understand use of different transforms and analyze the discrete time signals a
- 2. Realize the use of LTI filters for filtering different real world signals.
- 3. Capable of calibrating and resolving different frequencies existing in any signal.
- 4. Design and implement multistage sampling rate converter.
- 5. Design of different types of digital filters for various applications.

BTEXC505 Microcontroller and its Applications

Course Objectives: -

Objective of this course is to introduce to the students the fundamentals of microcontroller.

[–] After learning Microprocessor course, students will get advantage to pursue higher studies in Embedded Systems or employment in core industries.

The learner can microcontroller design based systems and thus can become successful entrepreneur and meet needs of Indian and multinational industries.

The students can design and develop processor which can be used in Robotics, Automobiles, Space and many research areas.

The learners will acquaint optimization skills and undergo concepts design metrics for embedded systems.

The students will get acquainted with recent trends in microcontroller like pipelining, cache memory etc.

To understand the applications of Microcontrollers. -

To understand need of microcontrollers in embedded system. -

To understand architecture and features of typical Microcontroller. - T

o learn interfacing of real world input and output devices.

To study various hardware and software tools for developing applications.

Course Outcomes:

1. Learner gains ability to apply knowledge of engineering in designing different case studies.

2. Students get ability to conduct experiments based on interfacing of devices to or interfacing to real world applications.

3. Graduates will be able to design real time controllers using microcontroller based system.

4. Students get ability to interface mechanical system to function in multidisciplinary system like in robotics, Automobiles.

5. Students can identify and formulate control and monitoring systems using microcontrollers.

6. Students will design cost effective real time system to serve engineering solution for Global, social and economic context.

7. Learners get acquainted with modern tools like Programmers, Debuggers, cross compilers and current IDE i.e. integrated development environment tools.

8. Learn importance of microcontroller in designing embedded application.

9. Learn use of hardware and software tools.

10. Develop interfacing to real world devices.

BTEXPE506D Introduction to MEMS

Course Objectives: -

The objective of this course is to make students to gain basic knowledge on overview of MEMS (Micro electro Mechanical System) and various fabrication techniques.

This enables them to design, analysis, fabrication and testing the MEMS based components and to

introduce the students various opportunities in the emerging field of MEMS. –

This will enables student to study applications of micro-sensors and micro-actuators, various MEMS fabrication technologies, MEMS-specific design issues and constraints, Dynamics and modeling of microsystems, getting access to fabrication and testing in academia and industry.

Course Outcomes:

At the end of the course the students will be able to

1. Appreciate the underlying working principles of MEMS and NEMS devices.

2. Design and model MEM devices.

BTETC601 Antennas and Wave Propagation

Course Objectives: -

To understand the applications of electromagnetic engineering.

To formulate and solve the Helmholtz wave equation and solve it for Uniform Plane Wave. ⁻ To analyze and understand the Uniform plane wave propagation in various media. ⁻ solve the electric field and magnetic fields for a given wire antenna.

Course Outcomes: After successfully completing the course students will be able to

1. Formulate the wave equation and solve it for uniform plane wave.

2. Analyze the given wire antenna and its radiation characteristics.

3. Identify the suitable antenna for a given communication system

BTETC602 Computer Network & Cloud Computing

Course Objectives: -

To develop an understanding of modern network architectures from a design and performance perspective.

To introduce the student to the major concepts involved in wide-area networks (WANs), local area networks (LANs) and Wireless LANs (WLANs).

To provide an opportunity to do network programming -

To provide a WLAN measurement ideas.

Course Outcomes:

1. To master the terminology and concepts of the OSI reference model and the TCP-IP reference model.

2. To master the concepts of protocols, network interfaces, and design/performance issues in local area networks and wide area networks.

- 3. To be familiar with wireless networking concepts.
- 4. To be familiar with contemporary issues in networking technologies.
- 5. To be familiar with network tools and network programming.
- 6. For a given requirement (small scale) of wide-area networks (WANs), local area networks
- (LANs) and Wireless LANs (WLANs) design it based on the market available component.

7. For a given problem related TCP/IP protocol developed the network programming.

8. Configure DNS DDNS, TELNET, EMAIL, File Transfer Protocol (FTP), WWW, HTTP, SNMP, Bluetooth, Firewalls using open source available software and tools.

BTETC603 Digital Image Processing

Course Objectives:

An ability to use current techniques, skills, and tools necessary for computing practice with an understanding of the limitations

Course Outcomes:

After completion of this course students will be able to

- 1. Review the fundamental concepts of digital image processing system.
- 2. Analyze images in the frequency domain using various transforms.
- 3. Categories various compression techniques.
- 4. Interpret image segmentation and representation techniques.

BTETC701 Digital Communication

Course Objectives: -

To understand the building blocks of digital communication system.

To prepare mathematical background for communication signal analysis.

To understand and analyze the signal flow in a digital communication system.

To analyze error performance of a digital communication system in presence of noise and other interferences.

To understand concept of spread spectrum communication system.

Course Outcomes:

1. Analyze the performance of a baseband and pass band digital communication system in terms of error rate and spectral efficiency.

2. Perform the time and frequency domain analysis of the signals in a digital communication system.

3. Select the blocks in a design of digital communication system.

4. Analyze Performance of spread spectrum communication system.

BTETPE702D Fiber Optic Communication

Course Objectives: -

To learn the basic elements of optical fiber transmission link, fiber modes configurations and structures.

To understand the different kind of losses, signal distortion in optical wave guides and other signal degradation factors.

To learn the various optical source materials, LED structures, quantum efficiency, Laser diodes [–] Understand the functionality of each of the components that comprise a fiber-optic communication system: transmitter, fiber, amplifier, and receiver. [–]

Understand the properties of optical fiber that affect the performance of a communication link. Understand basic optical amplifier operation and its effect on signal power and noise in the system.

- Apply concepts listed above to the design of a basic communication link.

Course Outcomes:

At the end of the course, students will demonstrate the ability to:

1. Understand the principles fiber-optic communication, the components and the bandwidth advantages.

2. Understand the properties of the optical fibers and optical components.

- 3. Understand operation of lasers, LEDs, and detectors.
- 4. Analyze system performance of optical communication systems.
- 5. Design optical networks and understand non-linear effects in optical fibers

BTETPE703A Embedded System Design

Course Objectives: ⁻ To understand the embedded system design issues. ⁻

To learn real time operating system concepts. -

To understand the Embedded Linux environment.

To learn embedded software development and testing process.

Course Outcomes:

At the end of the course, students will demonstrate the ability to:

1. Suggest design approach using advanced controllers to real-life situations.

2. Design interfacing of the systems with other data handling / processing systems.

3. Appreciate engineering constraints like energy dissipation, data exchange speeds etc.

4. Get to know the hardware – software co design issues and testing methodology for embedded system.

Electronics & Telecommunication Department

Program Outcomes

Upon successful completion of this course it is expected that electronics graduate will be able to:

a. Understand and proficiently apply the relevant sciences & amp; scientific methods to Electronics engineering to design solutions to complex problems in electronics systems, electronic circuits & amp; control processes.

b. Identify, interpret & amp; critically appraise current developments, advanced technologies and apply them to electronic engineering field to enhance reliability and efficiency of electronics based systems, components and programs.

c. Identify and synthesize the constraints posed by economic factors, safety considerations, environmental impacts and professional standards on Electronics engineering practices and use them for professional judgments in solving the critical field problems for sustainable technological development of nation.

d. Determine, analyze and proficiently apply theoretical and numerical analysis of Phenomenon to conceive, control & amp; optimize the performance of Electronics engineering systems used for different applications such as in navigation, automobiles, transportation, and automation.

e. Identify and critically evaluate the performance of a electronics engineering systems in terms of economics, safety, and social and physical environment and implement approaches to minimize any adverse impact leading to sustainable development of society.

f. Understand and proficiently apply a systems approach for electronics system design and addressing the broad contextual constraints, leading to sustainable developments of global level electronics technologies and standards.

g. Show awareness and ability to proficiently apply project management tools and methodologies to the planning and execution of projects leading to electronics engineering solutions of professional standards.

h. Develop & amp; implement creative and innovative approaches to enhance the reliability, efficiency and economical aspect of electronics systems for sustainable improvement of electronics technologies.

i. Communicate effectively on both technical and general issues with peers, associate, clients and the general public to find solutions using technical proficiency.

j Operate effectively and professionally within a team environment to solve complex problems of analyze, design and development of electronics systems.

k. Use all fundamental knowledge of electronics engineering, sciences and mathematics to plan, organize and use resources efficiently to reduce adverse effect on environments.

Course Outcomes of ESD:

At the end of the course, students will demonstrate the ability to:

- 1. Suggest design approach using advanced controllers to real-life situations.
- 2. Design interfacing of the systems with other data handling / processing systems.
- 3. Appreciate engineering constraints like energy dissipation, data exchange speeds etc.
- 4. Get to know the hardware software co design issues and testing methodology for

embedded system.

Course Outcome	Program Outcome
1	b, c, i, j, k
2	d, j, k
3	a, b, c
4	e, g, j

Mapping of Course outcomes and Program Outcomes

P.E.S.College of Engineering Aurangabad.

Electronics & Telecommunication Department

Program Outcomes

Upon successful completion of this course it is expected that electronics graduate will be able to:

a. Understand and proficiently apply the relevant sciences & amp; scientific methods to Electronics engineering to design solutions to complex problems in electronics systems, electronic circuits & amp; control processes.

b. Identify, interpret & amp; critically appraise current developments, advanced technologies and apply them to electronic engineering field to enhance reliability and efficiency of electronics based systems, components and programs.

c. Identify and synthesize the constraints posed by economic factors, safety considerations, environmental impacts and professional standards on Electronics engineering practices and use them for professional judgments in solving the critical field problems for sustainable technological development of nation.

d. Determine, analyze and proficiently apply theoretical and numerical analysis of Phenomenon to conceive, control & amp; optimize the performance of Electronics engineering systems used for different applications such as in navigation, automobiles, transportation, and automation.

e. Identify and critically evaluate the performance of a electronics engineering systems in terms of economics, safety, and social and physical environment and implement approaches to minimize any adverse impact leading to sustainable development of society.

f. Understand and proficiently apply a systems approach for electronics system design and addressing the broad contextual constraints, leading to sustainable developments of global level electronics technologies and standards.

g. Show awareness and ability to proficiently apply project management tools and methodologies to the planning and execution of projects leading to electronics engineering solutions of professional standards.

h. Develop & amp; implement creative and innovative approaches to enhance the reliability, efficiency and economical aspect of electronics systems for sustainable improvement of electronics technologies.

i. Communicate effectively on both technical and general issues with peers, associate, clients and the general public to find solutions using technical proficiency.

j Operate effectively and professionally within a team environment to solve complex problems of analyze, design and development of electronics systems.

k. Use all fundamental knowledge of electronics engineering, sciences and mathematics to plan, organize and use resources efficiently to reduce adverse effect on environments.

Course Outcomes:

1. Learner gains ability to apply knowledge of engineering in designing different case studies.

2. Students get ability to conduct experiments based on interfacing of devices to or interfacing to real world applications.

3. Students get ability to interface mechanical system to function in multidisciplinary system like in robotics, Automobiles.

4. Students can identify and formulate control and monitoring systems using microprocessors.

5. Students will design cost effective real time system to serve engineering solution for Global, social and economic context.

6. This course understanding will enforce students to acquire knowledge of recent trends like superscalar and pipelining and thus finds recognition of continuous updation.

7. Learn use of hardware and software tools. 8. Develop interfacing to real world devices

Course Outcome	Program Outcome
1	a, f, j
2	c, d, e
3	d, j
4	f, j, k
5	e, f, k
6	b, c
7	f, g

Mapping of Course outcomes and Program Outcomes

Engine ranesbad.

P.E.S College of Engineering Department of Mechanical Engineering

Department of Mechanical Engineering Program-Specific Outcomes (PSOs)

PSO1 Graduates of the program will achieve excellence in product design, thermal engineering and manufacturing system by acquiring knowledge in mathematics, science and designing principles.

PSO2 Graduate will analyze, interpret and provide solutions to the real life mechanical engineering problems.

PSO3 Graduate will develop an approach to solve multidisciplinary problems of manufacturing and allied industries.

PSO4 Graduates will learn managerial skills to work effectively in a team and in a society by following ethical and environmental practices.

P.E.S.COLLEGE OF ENGINEERING, AURANAGABAD agsenvana, besides panchakki Aurangau...d. Mechanical Engineering Department

3 Subject Strength of Materials (BT-MEC 403) SE (B-Tech)

Course				Program specific outcomes (PSOs)												
Operation	POI	PO2	PO3	PO4	PO5	P06	P07	POS	P09	POID	POII	PO12	PSO1	PSO2	PS03	PSO4
CO1	1	1	4		1	2				4	1		4	100	-	1
CO2	4	1	1		4.	4.				1	4		10	¥.		4
CO3	1	1	4		4	1		-	-	1	4		1	1	4	1
CO4	1		1		1	1				1	1		1		4	4
CO5	1		1		1	1				1.	1		1			
CO6	1	1			1	1	1 - 7	1	-	1	1		1			

4 Subject Numerical Methods in Mechanical Engineering (BT-MEC 404) SE (B-Tech)

Course Outcomes					P	regran	n Oate	omes					Progra (PSOs)	un speci	fic nutco	mies
	POI	PO2	PO3	P04	PO5	PO6	P07	POS	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4
CO1	5	1	and the	1	1			1.000	111	10-242	11111	201001	1	20-22	00000	
CO2	1	1		4	1								1			
CO3	4	1		4	4	1							4			
C04	*	1.		4	*						11.000		4			

Department of Mechanical Engineering

P.E.S COLLEGE OF ENGINEERING, AURANAGABAD Mechanical Engineering Department

3 Subject	Machine Drawing and Computer Aided Drafting	SE (Il-Tech)
-----------	--	---------------

Course					Program specific outcomes (PSOs)											
Concession.	POL	PO2	P03	P04	POS	PO6	POT	POR	1409	PO10	FOII	PO12	PSO1	PS02	1503	PS04
COL	1	1111	-	3,0000000	1.1.1.1.1.1.1.1.1	11.00	12000	1000	4	1	1.000	1	1		1	
C02	1	1		1			11-11		4	4		4/	4			×
CO3	4								4	1		1	1	1		
COI	1	12			1				4	4.	11	S.	1	-	-	1.4
CO5	1	14			4	1		1	4	4		1.	×.	-	×	-
006	1	1		1 200	10	1	11		1	1	17	1	1	-	-	

4 Subject Thermodynamics (BT-MEC 305) SE (B-Tech)

-	Program Outcomes													Program specific outcomes (PSOs)				
					- Sector of T	107	PO8	P09	P010	P011	PO12	PSOI	PS02	PS03	PSO4 ⊀			
POI	PO2	PO3	PO4	POS	POe								(Second)					
1	1		1.5		-	-		-		Contraction of the			1					
1	1	1	1.1.1	-		-	-	-	1	1	-			1				
-	15	1			-		-	-	-	-	-	-	4		Sec.			
1	-	-		*	-	-	-	-	-	1	1	-		-	1			
1	4				-	-	-	-	-	-			1	5.				
	POI 2 2 2	PO1 PO2	PO1 PO2 PO3	PO1 PO2 PO3 PO4 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	PO1 PO2 PO3 PO4 PO5 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	Program	POI PO2 PO3 PO4 PO5 PO6 PO7 2	Program Outcomes PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 2 <	Program Outcomes PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 2<	Program Outcomets PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 2 <t< td=""><td>Program Outcomes PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO30 PO11 2</td><td>Program Outcomets PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 2 2 2 2 3</td><td>Program Outcomes Program Outcomes Program (pSos) PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PSO1 2</td><td>Program Outcomes Program spect (PSOs) PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PSO1 PSO2 2</td><td>Program Outcomes Program specific outcomes PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PS01 PS02 PS03 2</td></t<>	Program Outcomes PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO30 PO11 2	Program Outcomets PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 2 2 2 2 3	Program Outcomes Program Outcomes Program (pSos) PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PSO1 2	Program Outcomes Program spect (PSOs) PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PSO1 PSO2 2	Program Outcomes Program specific outcomes PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PS01 PS02 PS03 2			

(IC) Tiesd Department of Mechanical Engineering

P.E.S COLLEGE OF ENGINEERING, AURANAGABAD

Rigsenvana, besides panchakki Auranga

Mechanical Engineering Department

Mapping of course outcomes (COs) with program outcomes (POs) & program-specific outcomes (PSOs)

1 Subject Material Science and Metallurgy (BT-MEC 302) SE (B-Tech)

Course Outcomes					P	rograt	u Oute	omes					Progra (PSOs)	im speci)	fic onteo	antes
	PO1	P02	PO3	PO4	PO5	P06	PO7	POR	PO9	POIS	POII	PO12	PSO1	PSO2	PSO3	PS04
COL	1	1	1	- ACAPAGE									1		1	
CO2	1	1	4	1	1					1.	-		4	4	1	
CO3	4	1	4	4	4			1.2.1					4	1		-
CO4	15	1	4	1	1	4	1	10	10	1				1		-
C05	1	1	1	1	1		1		1					0		· ·
C06	V	10	4	1	1	4	1		1	16	1000	-	1	14	1	1

Course	-	-	_		P	rogran	n Outc	omes					Progra	in speci	fic outer	SUDICS.
Outcomes	1	_	11-1-2-2			and the second	10/22	POS	POS	POID	POIL	1012	PSOI	PSO2	PSOJ	PS04
	PO1	PO2	PO3	PO4	POS	1.00	Par	100				4				
COL	1	4	4	4	×		1	-	-			1		4	0— U	
002	4	1	4	1	1	-		-	-		_	11	4			4
001	1	1	1	*	1	-	-	-	-	-	-	2	-	-		
COA	1	1			-		-	-	-		-	1			1	-
005	1	1				-	-	-				4	11000		1	
C06	11	1	-		_		-	-		-		-		1	RI .	

Head Department of Mechanical Engineering

P.E.S COLLEGE OF ENGINEERING, AURANAGABAD agsenvana, besides panchakki Auranga, Al. Mechanical Engineering Department

Semester IV

1 Subject | Manufacturing Processes-I (BT-MEC 401) | SE SE (B-Tech.) (B-Tech.)

Course					5	rogram	n Oute	omes	-	-		-	Proster	in and	The could be	
	PO1	PO2	PO3	P04	POS	POG	BOT	TRACIN					(PSOs	hin speci	THE STREET	mes
C01	1	1	1		1	100	PUL	POS	PO9	PO10	POIL	PO12	PSO1	PSO2	PSOJ	PSO
CO2	1	1	4		4	2-	-	-		×	1		1			1
CO3	~	1	4		1	-	-	-		X	¥.		1	V.		4
CO4	4		4		4	-	_			~	1		4	1	4	4
005	1	-	1	-	1	-	_	-		*	1		8		4	4
CO6	1		1000	-	-	1	_	-	_	1	*		4			
CAPO I		_			1. A.		-	-	-	1	1		×	1		

2 Subject Theory of Machines-1 (BT-MEC 402) SE (B-Tech)

Coarse Outcomes					P	rograi	n Oute	omes					Progra	im speci	fic outer	umies 1
	PO1	PO2	PO3	PO4	POS	PO6	PO7	POS	PO9	PO10	PO11	PO12	PSO1	PS02	PSOJ	PSO4
CO1	Total Parts			1								4	4			
CO2	1		-	1	-	1				_		1	1	4	in	1
C03	1	1	_	1	_	10000	-					1	1	1	+	1
CO4	1	1	_	1	-							1	4		4	4
C05	~	4		1	-				1		-	1	1		Sou.	1

Department of Mechanical Engineering

1 Be

P.E.S.COLLEGE OF ENGINEERING, AURANAGABAD

Agsenvana, besides panchakki Auranga...d. Mechanical Engineering Department

5 Subject Basic Human Rights (BT-HMC 306) SE (B-Tech)

Course					Р	rogran	s Oute	omes					Progra	m speci	fic outco	mes
Outcomes	POI	PO2	PO3	PO4	PO5	P06	P07	POS	P.09	PO10	PO11	PO12	PSO1	PSO2	PS03	PSO4
C01			1			1	-						1		-	-
CO2					-	-				-		-	-	-		
CO3	-				-	-	-	_	1			11	-	4	1	4.
CO4		-		-	-	-	-	10		-	-	1	-			-
CO5			-	-	-	-	-	-	-	1	-	1				1
CO6	10-	1	1	-	h	-	<u> </u>							10		

Department of Mechanical Engineering

7 Sul	ject 5	Solar E	nergy	BTM	EC6063	<u>8</u>		3	TE (B-	Tech)						1	Ë)
Course					P	rogran	n Oute	omes					Progra	im speci	fic outco	omes	a sur
Outcomes	POI	PO2	PO3	PO4	P05	106	P07	POS	209	PO10	POIL	PO12	PSO1	PSO2	PSO3	PSO4	
COL	1	4			1	1	C.C.C.C.C.C.	1.000	12522	-	1						
CO2	10	1		100		4	1						1	172-31		_	
CO3	1	4		1	1		1		-				×	¥.	-	_	
C04	14	18	1	100-000		-	1					-	1		_	_	
C05	1×	14		140	1					-		-	1	1	-	_	
COL		1	12			1	1		1								E

W Head Department of Mechanical Engineering

5 Subject Mechanical Mensurements BTMEC604D TE (II-Tech)

0

Course					P	rogran	a Oute	omes					Progra (PSOs)	im speci	fic outes	omes
	PO1	PO2	PO3	PO4	1'05	POs	PO7	POS	100	POID	POIL	PO12	PSO1	P502	PSO3	PSO4
CO1		4	4	1	1	10000	a subseque	- tracticity	atta ta ta	aler said		1	1	A.C.		
C02	1	1	10	1	11.	1.1	-	-			-	1	1	10	16	
CO3	1	1	1	¥.	1							1	4	4	~	

3

6 Subject Renewable Energy Sources BTMEC605C TE (B-Tech)

Course Outcomes					1	rogram	n Oute	omes					Progra (PSOs	im speci)	fic outer	umes
	POI	P032	PO3	PO4	PO5	PO6.	PO7	PON	PO9	PO10	POIL	PO12	PSO1	PSO2	PSO3	PSO4
COL	1	1	4		1	2	2	4	1	4		4	1			
CO2	4	1	1	2	1	1	1	4	1	~		1	1	1	1	
CO3	6	1	1				1	4		4		*	1	+	1	
CO4	1	8	100		Ø.	1	4	4		1		4		4		2

Department of Mechanical Engineering

Head

3 Subject Applied Thermodynamics - H BTMEC603 TE (B-Tech)

Course Outcomes					P	rogram	n Outc	omes					Progra (PSOs	un speci)	fie oute	omes \
20.000	101	PO2	PO3	PO4	PO5	POs	POT	POS	PO9	PO10	POIL	POIZ	PSOI	PSOT	PSO3	PSO4
COL	1	4	and states in	and the state of t		1.11.10.	-5.35.2	1			A cross.	1	1	1		and the other in the
CO2	4	4		1		1		1		4		1	4	1		4
CO3.	*	4				1		1		1	-	1	1	1	1	4
CO4	1	4	4	1		8		4		1		10	1	1	4	1
C05	2	1				4		2		1		1	2	1.1	1	1
CO6	4	14	2	~		4		1		1		1	1		1	

4 Subject ICEngines BTMEC604B

TE (B-Tech)

Course Outcomes					P	rograt	n Oute	omes					Progra	un apeci	fic outco	omes
	PO1	PO2	PO3	PO4	PO5	PO6	107	POS	1'09	PO10	POH	PO12	PSOI	PSO2	PSOT	PSCH
COL	4	*			4	1000	100000	000000	1	1000000	1.10-277	The state	2000	10000000000	A STORT	1004
CO2	8	1			×.					-		-	1	-		-
CO3	Ľ	4			4		1		4	_	-		(7).	2		-
CO4	4	1		4	4			-	1	_	-		0	-		-
COS	1	4	1		v	-	1	-		-	-	-	<u> </u>	1.		-
CO6	1	×		¥.	1	1	4		4		_		_	-		

Altreat Department of Mechanical Engineering

Outcomes					P	rograa	n Oute	umes					Progra	im speci	fic outco	mes
	POL	PO2	PO3	PO4	POS	POG	POT	POS	C BACKED	BOMB.	DATE	DOT	DECAT	marrie	TREAT	need
CO1	4	4	4	1			- Same	1.00	TUP.	2010	ron	PULL	CSOL	1302	1800	1504
CO2	4	5			-		-		_	_			A.	_		
CO3	15	1	1	1	2				-			4	×		1	1000
004	1	1	-	1	-							4	1	1	1	
COL		1	-		-							× .	4		_	
0.05		1	1		4							3	1	1		_
COs	1	4	4	1		-	-	2		_		-	-		-	-

0

2 Subject Machine Design + II BTMEC602

TE (B-Tech)

13

Outcomes					1	Togran	n Out	omes					Progra	un speci	fic outer	mes
and the second	101	POT	PO3	PO4	POS	POG	POT	DUNE	Riddan .	-	-	10000	(PSO ₂	accession of		
COL	+	1 and		- Contraction		1 1.10	1.92	rus	109	POIe	POIL	POIZ	PSOI	PSO2	PSO3	PSO4
CO2	1	1	-	-	-	12	_	¥	-	1200		1	4		1	1.000
003	1.	1	-	10	-	*	-	1		the second		A.	1	-	1	
CO4	7	2	2	-	-	1	_	1		1		4.	1	1	1	
005	1	2		10		<u>e</u>	1	1		1		1	V	1	1	-
06	2	-	12	-	-	*	1	4		4		1		<u>-</u>	-	-
	<u> </u>	-	*		1	4	1	+		4		1	3	-		-

Gread Department of Mechanical Engineering

ALC: NO.

5 Subject Metrology and Quality Control DTMEC505 TE (B-Tech)

Outcomes					P	regrau	n Oute	mines					Progra	im speci	fic oute	omes
	POI	PO2	PO3.	PO4	POS	PC16	POT	1939	and the second	Dimons.	L INCLU .	Dimes and	DECH	100000	100000	-
COL			a second	1	- Totala		1. 200	1 270	1.00	15010	1011	1:012	1301	130%	1203	1504
CO2	-	4	4		5					_			1		-	
CO3	11		1	12	-	-				_			*	A.	-	
CO4	1		-			1		_	_			-	4.	*	1	
C05	1			-		4	_	_					1	V.	1	
605	3		_					×	4		4.	1	1		1	
1.00				1		1		*	4		1	V	4.	-		

6 Subject Product Besign Engineering - II DTID506 TE (B-Tech.)

Course Outenines					E	, we get a	m Oute	omes					Progra	im speci	fic oute	omes
	POI	PO2	1903	POL	POS	DOM	1000	L INCOM	-	- Martin - And			(PSOs	Landrese.		
COL	A.	1	1	1.000	105	100	PUS	PUS	PO9	PO10	POIL	PO12	PSO1	PSO2	PSO3	PSO4
CO2	V	2	-	-	-	-	2	1	-	1-2.24	- and		1			1.2.0.1
CO3	1	1		1	2		-		-	1200	_		×	1.	4.	
C04	1	2	1		-	-	-	-	-		_		1	4	1	
L'ALT -			-			1							1-	1	1000	

A

Department of Mechanical Engineering

1 Subject Manufacturing Processes - II (87MEC601) TE (B-Tech)

3 Subject	Machine Design - 1	BTMEC303	TE (B-Tech)
			the second

0

Course Outcomes					P	rograu	n Oute	omes					Progra	im speci	fic outer	imes
	POL	PO2	PO3	104	PO5	PO6	PO7	POS	191310	POID	POIL	POIST	PSOT	PSTY	PSGL	PSOA
COL	*	1		10000	1				100	1.010	CONT.	1 tons	1 and 1	2004	1.56.63	4 /05/14
CO2	4	1		al contraction of the second		1		÷.				*		- S		
C03	1	5		1		2		-	-	*		*	×	1		-
CO4	4	1	1	1		2		-	-	*	_	*	1	1	20	
005	2	2			-			<u>x</u>		<u>¥).</u>		<i>A</i> .	£	×	10	1
006	3	3	77		-	*		¥.		¥		4	1		1	1
COD.	*		*	*	11	*		4		1		1	4	1	1	

4 Subject Theory of Machines - II BTMEC504

TE (B-Tech)

2

Outcomes	-				P	regrat	n Oute	omes					Progra	m speci	fic oute	mes
1000	POI	POL	PO3	PO4	POS	PO6	PO7	POS.	PO9	PO10	PO11	PO12	PSOL	PEON	DECAR	-
COL	*	1	1		4	and a large	Y			1		1 tota	1.001	1302	1303	1,204
CO2	4	4		-		-			-	1.0	-	×.	×.		1000	
COL	2	2										1	1		1	
	-	1		the second second								1	2	1	1	_
004	1	1		11	1		1.10	_			-			and the second s	14	
CO5	4	1	-	4	-	_			-	-	-	V.	1	1		
CO6	1	1	-	1	-				-		_	1	1		10000	-
		-	-	*								×.	1			_

Department of Mechanical Engineering

Head

Aurit

THIRD YEAR

1 Subject | Heat Transfer (BTMEC501)

TE (B-Tech)

Course Outcomes	-				P	rogra	m Oute	omes					Progra	am speci	fic oute	mes
	PO1	PO2	PO3	PO4	POS	POG	POT	POS	POT	POIN	POIL	PO12	PSOI	DS(12	PSOT	DECH
CO1	1	1			4	10000	100000-00		12000	1 10 10	1.011	1.011	raun	1304	1.503.	r stra
CO2	4	1		1	1			-	1.0				×	-		_
CO3	4	4			12		3		1		-		1	1000	T	_
CO4	1	1	41	1	1	-		_		-			-	*		
C05	1	*	4		1	_	2				_	_	10	1	1000	
COó	1	1		1	1		2	-	5					1	1	-

2 Subject Applied Thermodynamics - I (BTMEC502) TE (B-Tech)

Course Outcomes					1	rogram	m Oute	omes					Progra	un speci	fic outer	omes
	POL	PO2	PO3	PO4	POS	Pris	POT	DOW	Decio.	BOLD	-	L Brances	(PSOs			
COL	1	1			1.440	1.1.10	107	108	roy	PO10	POIL	PO12	PSO1	PSO2	PSO3	PSO4
CO2	1	1		-	-	-		-	1-1	-			a ma series i			
CO3	1		1	-	-				_	_	_		*	1		
CO4		-	1	-	2	_	-	1	1	_		-	4			
CO5		v 1	-	1	-		-		-	_	-		I.			

Department of Mechanical Engineering

A

				100 C			Contraction of the second	COLEO	gineer	ring De	partme	tot				101	8
				21.34	bject	Produ	t Desig	n Engi	nceria	(BT-M	EC 485)	SE (B-Tech			12(
Course		_	_													151	-
Outcomes					1.4	rograi	II Out	comes					Progra	UII Speci	fic oute	Carries .	- Dent
- and the	POI	PO2	P03	POI	POS	DOV	Parties and	Press of	-				(PSOs	1	and annual	omes	- and
COL	×	V.			1000	PUB	P07	POS	PO9	PO10	POIL	PO12	PSO1	PSO2	PSO3	PSOA	
:02	4	1										1	4			1004	
:03	*	1	_		2		-		1				4	_	-	1	
1040	1	1		2	-	-	1					1	4	7	7	-	
650943 S				A. Commission	-								-				
05	¥ .	6		10	-	-							*	V. 1	1		

6 Subject Interpersonal Skills (BT-MEC 406 C) SE (B Tech)

Outcomes					1	rograi	m Out	comes				-	Progra	um speci	die outo	Children of Childr
1. 1. 1. 1. 1	POI	POZ	POS	PO4	POS	TYN	Inches	Littera			10.000		(PSOs)	and South	omes
COL		1			1.47.5	100	107	ros	1.03	POI0	POII	PO12	PSO1	PS02	PSOL	INCOM.
CO2		1		_		-		4				-	1	1000	* 114.7 D	1304
CO3		-	_	_				11	1	1		-	-	-	_	-
CO4		-	-		-	-	-					4	-	-	_	_
005	-	-	-	-	_	-			1	السيدال			1	-		
106		-	-	_		-	-		- V.	1			-		-	100
	-	-					1 - 1		-114		1	-			1	_

Head Department of Mechanical Engineering

9 Sub	jeet P	roject S	tage - 1	HTM	EP711			_		-	- BR (B-Tech				1
Course Outcomes					P	rograi	n Oute	omes					Progra	am spec	fic nate	Amores
P.C.	PO1	PO1	PO3	PO4	PO5	PO6	PO7	POS	109	POId	POIL	PO12	(PSO)	PSIN	PECIA	PROV
COT	×	×		1					172.00		1000	1 012	1000	1 auro	1305	1304
002	1	100	-	-		1		1		1			1	2	0	1
COS	-	11	1				1		\sim		4	1	1		1	-
COA	1		10	1	1	4	1000	-		¥.	-	2	5		1	
C05	1	1	4			-		4	1	1	1		-	1	-	1
CO6	4	11000	1		1	-	-			100	-	10 10	20. L	2.1	_	×.

10 Subject Project Stage - IUInternship and Project BTMI PRO) BE (B-Tech)

Course Outcomes					P	rogram	n Oute	omes					Progra	m speci	fic outer	incs
	POL	PO2	PO3	PO4	POS	POG	1107	POS	PUID	PETO	POIL	DOWN	DECH	Margare T	and the second second	
COL	6	4	10000	11111	and a little	1.000		1.000	4.679.	1010	ruar	TOIL	1301	1802	1803	1804
CO2	-		10		1.00		1.2.2			-		1	×	4		1
C. C. P. B.		-	1. Carlos -	Y	4	4	4.	1000				11	4	1	1	12
CO3		1		A second	15	1	1.	1		1					1 de la como	100
004	1		3	1	-	-		eletter	_	1	_		1	1	1	4
			S	1 - C	1	X	× .			4		1	1	1	1	1

Department of Mechanical Engineering.

Certain	Justij	111000-010		DIME	C/03L	_			_		BE.(B-Tech				(and	8
Course Outcomes					P	rogran	o Oute	omes		_	_	-	Progra	im speci	fic outco	omes	a a Magn
	POI	PO2	PO3	PO4	PO5	PO6	POT	POS	Prog	2010	DUNE	-	IPSOS DSCAL	100237	-	DETA	
COL				1000	and the second	10000	- and	2	105	- Conta	ron	rona	1301	1902	raus	1304	
CO2		14	4	1	1	40	4	2	1			<u>.</u>	2	17		-	
C03	120	4	1	V	1	1	12			-			-	-	-	_	
CO4	14	15	-	V				-	-	_	_		1	*	_	_	
	1111	-	-	A													

8 Subject Fueld Training/InternahigeTedustrial Training - UL BITMEF710 BE (B-Tech)

-

Course Outcomes		Program Outcomes												Program specific outcomes			
	P01	PO2	PO3	PO4	POS	PO6	PO7	POS	PO9.	POIG	POIL	2012	DECH	DECO	-	There a	
COL		1.	1	(1100)/5	10000000	1	1000012-04	- Cartan		1. 1. 1. A. A. A.		4 4444	1301	1302	1203	1504	
1111	_	12				-		Gill -	_		1	1.00	¥.	1.	18-	4	
1.02		1						1.			1	1	1	1	1		

Hend

Department of Mechanical Engineering.

[3] Sul	ject []	Manufa	cruring	Process	ca - 111	втм	BTMEC303 BE (B-Tech)									(1)		
Course Outcomes	Program Outcomes													Program specific outcomes				
	POI	PO2	PO3	PO4	PO5	PO6	PO7	POS	1 19130	POIS	BOLL	DOLD	(PSOs)	-			
COL	4	1	1					1.00	1.00	E CHIO	TOIL	ronz	1301	PSO2	PSO3	PS04		
CO2	4	1	1		1	-	-		-	-			×			a tanta a		
CO3	1	1	4	-	-	-	-	-	-	-	_		1		1			
COA	5	5	12		-	127				11	-	1	1	1	×			
000	No. and	1	1.74		-	1	×				-	1	4	1				
COS	1	1	1			4	4		1	1	-			1	-	_		
CO6	4	14	1			1.5	110				-			1.000				

4 Subject Industrial Engineering and Management BTMEC704B BE (B-Tech.)

Course Outcomes	Program Outcomes													Program specific outcomes				
	POL	PO2	PO3	PO4	P05	POG	PO7	POS	Proo	POIN	POIL	I BOATS	DECOS	-	The local	Constant of the		
COL								1 400.		TOTO	Poli	1012	rsor	1801	PSOI	PSO4		
602	_	-	_			_	_	_	1100			1	1000		10000			
1000	_	-		-				1 mil	4	1	4		¥).	4	-			
COS	-							4.			1	4	2	1	9			
CO4								4	_	_		1		1000				

Head Department of Mechanical Engineering
BE MECHANICAL FINAL YEAR

1 Subject Mechatronics BTMEC701 BE (B-Tech)

Course Outcomes	Program Outcomes									Program specific outcomes (PSOs)						
	PO1	PO2	PO3	PO4	POS	PO6	PO7	POS	1209	POID	POIL	PO12	PSO1	PSO2	PSO3	PSO4
COL	1	4	4	4	4		2000	a contra	1	11122-224	10000	4	P	122200	1000	
CO2	1	1	1000	1	4.	4	1			4	4.	1	1	1		-
CO3	14	14	1.00	1	1	4	1				1	1	1	1		
CO4	4	1	4	4	14		4	1	7				4	1	4	
CO5	1.	1	1	1	4	1	4	1				4	4		1	
CO6	T	14	1	1	1	1	4	1	V			1	1			

3

2 Subject CADICAM BIMEC703 BE (B-Tech)

Course Outcomes	Program Outcomes									Program specific outcomes (PSOs)						
	POI	PO2	PO3	PO4	PO5	PO6:	PO7	POS	PO9	PO10	POIL	PO12	PSO1	PSO2	PSO3	PSO4
COL	4						Contract of					4				
CO2	×	1	4		4		11-00					11	4		4	
CO3.	4		4								-	4	1	Sec.	1	
CO4	4	4	1. Te		1		. U					1	1	1	10	
COS	1	1	1	4	4				-		-	1	12	12		
C06	4		4									4	-	12		-

(M Head

Department of Mechanical Engineering

Key Indicator- 2.6 Student Performance and Learning Outcome

2.6.2 Attainment of Program outcomes and course outcomes are evaluated by the institution

The program outcomes and Program Specific outcomes are assessed with the help of course outcomes of the relevant courses through direct and indirect methods. Direct methods are provided through direct examinations or observations of student knowledge or skills against measurable course outcomes. The knowledge and skills described by the course outcomes are mapped to specific problems on University Examination, internal exams and assignment. Finally, program outcomes are assessed and Program Assessment Committee concludes the PO attainment level. To evaluate skill of Students college student are participated in various competition At the end of each semester, university conducts examinations based on the result published by the university the course outcomes are measured. Department endorse students to choose their project related to the University subject to utilized theoretical skills in industry. The assignments are provided to students and they refer the text books and good reference books to find out the answers and understand the expected outcome of the given problem. Three internal tests are conducted per semester for the following purposes

- To ensure that students have achieved desired level of competencies at module level.
- To evaluate, whether corresponding COs are achieved or not.
- According to the performance of the student in answering each question, mapping is carried out with the respective COs for assessing the attainment level of the specific CO of the subject.

POs, PSOs and COs are displayed and propagated to all the stakeholders (Industry, alumni, Parents, faculty and graduating students are notified about the outcomes clearly. COs of the programs is given to each and every department so the students and teachers can perceive and work with determination so the soft copies of the curriculum and course outcomes are also uploaded on the website of the Institution for reference. Hard copy of Course packs are given to all students and teachers for ready reference.

For each course outcome, methods of measurement are identified to measure progress of the outcome. Assessment of learning outcomes is carried out using data collected includes the following:

- Assessment of theory courses, through internal examinations and semester end examinations
- Assessment of laboratory course
- Assessment of Project work

Examination Process:

1.Continuous Internal Examinations (CIE) In a semester, the subject teacher will conduct one mid-term and two subjective continuous assessment tests as per the academic calendarr.

1.Semester End Examinations (SEE) semester end exam is conducted by the university.

1.**Theory Course:** The examination will be conducted at the end of each semester. 2.**Laboratory Course**: The practical examination will be conducted at the end of each semester in the presence of external examiner.

3. **Project Work Evaluation (Mini project / Main Project):** For project work, the evaluation process consists continuous internal evaluation carried out by the supervisor and final viva-voce in the presence of the external examiner. For mini project and internship evaluation process consists of two examiners for continuous internal evaluation And the final pratical /oral viva conducted by supervisor and external examiner appointed by the university.

Assessment Process: The assessment process used to evaluate course outcome consists of 60% end semester exam assessment and 40% internal assessment.

Principal P.E.S.College of Engineering Aurangabad.

incipal P.E.S.College of Engineering Aurangabad.

P.E.S. College of Engineering

Nagsenvan, Aurangabad Department of Mechanical Engineering Result Analysis for Acadmic Year 2020-2021

Sr.No.	Class	Division	No. of Standent appered	No. of Standent Pass	Passing %
1	SE	A+B	92	92	100%
2	TE	A+B	121	121	100%
3	BE	A-B	103	103	100%

Head

Department of Mechanical Engineeri

Sheet1

PES College of Engineering, Auragabad Department of Computer Science & Engineering Result Analysis 2020-21

Class	No. of Students	Passed Students	Passing %
SY CSE	11,6	110	94.00%
TY CSE	107	105	98.00%
Btech CSE	80	80	100.00%

HOD CSE Dept

P. E. S. College of Engineering, Aurangabad

Dept. of Electrical Engineering

Result Analysis of 2020-2021

Division (A+B)

Sr. No.	Class	Total no of Appear	Total no of Pass	Percentage
1	S.Y	111	111	100 %
2	T.Y	118	118	100 %
3	B.E	110	110	100 %

Head Dept. of Electrical Engineering

Dr. Chaudharl B.N.

Professor & Head Department of Electrical Engineer P.E.S. College of Engineering Aurangabad (M.S.)

PES College of Engineering, Nagsenvana, Aurangabad

Department of Civil Engineering

Result Analysis for the Year 2020 - 21

CLASS	No. of Students	No. of Pass Students	Passing %
SE	78	75	96.15%
TE	81	79	97.53 %
BE	52	51	98.79 %

Dr. ring ivil

P.E.S.COLLEGE OF ENGINEERING AURANGABAD

Department of Electronics & Telecommunication

RESULT ANALYSIS ACADEMIC YEAR - 2020-2021

CLASS	No. of students appeared	No. of pass students	Passing percentage
SY BTech	19	19	100%
TY BTech	7	7	100%
Final year BTech	10	10	100%

HOD

ETC Department

Course	Course Outcome
SY MECH	1. Study various crystal structures of materials
PART 1	2. Understand mechanical properties of materials and calculations of same
BTMEC302 Materials	using
Science and Metallurgy	appropriate equations
	3. Evaluate phase diagrams of various materials
	4. Suggest appropriate heat treatment process for a given application
	Prepare samples of different materials for metagraphy
	Recommend appropriate NDT technique for a given application
SY MECH	1. Define fluid, define and calculate various properties of fluid
PART 1	2. Calculate hydrostatic forces on the plane and curved surfaces and
BTMEC303 Fluid	explain stability of
Mechanics	floating bodies
	3. Explain various types of flow. Calculate acceleration of fluid particles
	4. Apply Bernoulli's equation and Navier-Stokes equation to simple
	problems in fluid
	mechanics
	5. Explain laminar and turbulent flows on flat plates and through pipes
	5. Explain and use dimensional analysis to simple problems in fluid
	mechanics
	7 Understand boundary layer, drag and lift
SY MECH	re chaoistana countary nujor, ang ana me
PART 1	1 Interpret the object with the help of given sectional and orthographic
	views
BTMEC304	2. Construct the curve of intersection of two solids
Machine	3 Draw machine element using keys, cotter, knuckle, bolted and welded
Drawing and	ioint
Computer	4 Assemble details of any given part i e valve pump machine tool part
Aided Drafting	etc.
5	5 Represent tolerances and level of surface finish on production drawings
	5. Understand various creating and editing commands in Auto Cad
SY MECH	1 Define the terms like system boundary properties equilibrium work
PART 1	heat ideal gas entrony etc. used in thermodynamics
BTMEC305	2 Study different laws of thermodynamics and apply these to simple
Thermodynamics	thermal systems
	like balloon piston-cylinder arrangement compressor pump, refrigerator
	heat exchanger, etc. to study energy balance
	3 Study various types of processes like isothermal adiabatic etc.
	considering system with ideal gas and represent them on p-v and T-s
	planes
	4 Apply availability concept to non-flow and steady flow type systems
	5. Represent phase diagram of pure substance (steam) on different
	thermodynamic planes like p-v. T-s. h-s. etc. Show various constant
	property lines on them.
SY MECH	1 Understand the history of human rights
PART 1	2 Learn to respect others caste religion region and culture
BTHM3401 Basic Human	3 Be aware of their rights as Indian citizen
Rights	4. Understand the importance of groups and communities in the society

	5. Realize the philosophical and cultural basis and historical perspectives
	of human rights.
	5. Make them aware of their responsibilities towards the nation.
SY MECH	1. Identify castings processes, working principles and applications and list
PART 2	various defects in metal casting
BTMEC401 Manufacturing	2. Understand the various metal forming processes, working principles
Processes-I	and applications
	3. Classify the basic joining processes and demonstrate principles of
	welding, brazing and soldering.
	4. Study center lathe and its operations including plain, taper turning,
	work holding devices and cutting tool.
	5. Understand milling machines and operations, cutters and indexing for
	gear cutting.
	5. Study shaping, planing and drilling, their types and related tooling
SY MECH	1. Define basic terminology of kinematics of mechanisms
PART 2	2. Classify planar mechanisms and calculate its degree of freedom
BTMEC402 Theory of	3. Perform kinematic analysis of a given mechanism using ICR and RV
Machines- I	methods
	4. Perform kinematic analysis of a given mechanism analytically using
	vector or complex algebra method
	5. Perform kinematic analysis of slider crank mechanism using Klein's
	construction and analytical approach
SY MECH	1 State the basic definitions of fundamental terms such as axial load,
PART 2	eccentric load, stress, strain, E, µ, etc.
BTMEC403	2 Recognize the stress state (tension, compression, bending, shear, etc.
Strength of Materials	and calculate the value of stress developed in the component in
	axial/eccentric static and impact load cases.
	3. Distinguish between uniaxial and multiaxial stress situation and
	calculate principal stresses, max. shear stress, their planes and max.
	normal and shear stresses on a given plane.
	4. Analyze given beam for calculations of SF and BM
	5. Calculate slope and deflection at a point on cantilever /simply
	supported beam using double integration, Macaulay's, Area-moment and
	superposition methods
	5. Differentiate between beam and column and calculate critical load for a
	column using Euler's and Rankine's formulae
SY MECH	1. Create simple mechanical designs
PART 2	2. Create design documents for knowledge sharing
BTID405	3. Manage own work to meet design requirements
Product Design	4. Work effectively with colleagues
Engineering - I	
TY MECH	1. Explain the laws of heat transfer and deduce the general heat
PART 1	conduction equation and
BTMEC501	to explain it for 1-D steady state heat transfer in regular shape bodies
Heat Transfer	2. Describe the critical radius of insulation, overall heat transfer
	coefficient, thermal
	conductivity and lumped heat transfer
	3. Interpret the extended surfaces

	4. Illustrate the boundary layer concept, dimensional analysis, forced and
	free
	convection under different conditions
	5. Describe the Boiling heat transfer, mass transfer and Evaluate the heat
	exchanger
	and examine the I MTD and NTU methods applied to engineering
	problems
	5 Explain the thermal radiation black body, amissivity and reflectivity
	ord evolution of
	and evaluation of
	View factor and fadiation sinelds
IY MECH	1. Define the terms like calorific value of fuel, stoicniometric air-fuel ratio,
PARTI	excess air, equivalent evaporation, boiler efficiency, etc. Calculate
BTMEC502	minimum air required for combustion of fuel.
Applied	2. Study and Analyze gas power cycles and vapour power cycles like Otto,
Thermodynamics - I	Diesel, dual, Joule and Rankine cycles and derive expressions for the
	performance parameters like thermal efficiency, P m Classify various
	types of boiler, nozzle, steam turbine and condenser used in steam power
	plant.
	4. Classify various types of IC engines. Sketch the cut section of typical
	diesel engine and label its components. Define the terms like TDC, BDC,
	r c, etc.
	5. Draw P-v diagram for single-stage reciprocating air compressor, with
	and without clearance volume, and evaluate its performance. Differentiate
	between reciprocating and rotary air compressors
TY MECH	1. Formulate the problem by identifying customer need and convert into
PART 1	design specification
BTMEC503	2 Understand component behavior subjected to loads and identify failure
Machine Design I	criteria
Machine Design - I	2 A polyzo the strasses and strain induced in the component
	4. Design of machine component using theories of failures
	4. Design of machine component using meones of families
	5. Design of component for finite life and infinite life when subjected to
	5. Design of components like shaft, key, coupling, screw and spring
TY MECH	1. Identify and select type of belt and rope drive for a particular
PARTI	application
BTMEC504	2. Evaluate gear tooth geometry and select appropriate gears, gear trains
Theory of Machines - II	3. Define governor and select/suggest an appropriate governor
	4. Characterize flywheels as per engine requirement
	5. Understand gyroscopic effects in ships, aeroplanes, and road vehicles.
	5. Understand free and forced vibrations of single degree freedom systems
TY MECH	1. Identify techniques to minimize the errors in measurement
PART 1	2. Identify methods and devices for measurement of length, angle, and
BTMEC505	gear and thread parameters, surface roughness and geometric features of
Metrology and Quality	parts.
Control	3. Choose limits for plug and ring gauges.
	4. Explain methods of measurement in modern machineries
	5. Select quality control techniques and its applications
	5. Plot quality control charts and suggest measures to improve the quality
	of product and reduce cost using Statistical tools.

P.E.S College of Engineering

Department of Mechanical Engineering Subject wise Course Outcome 2021-22

	Subject wise Course Outcome 2021-22
TY MECH	1. Understand the process of powder metallurgy and its applications
PART 1	2. Calculate the cutting forces in orthogonal and oblique cutting
BTMEC505	3. Evaluate the machinability of materials
Metrology and Quality	4. Understand the abrasive processes
Control	5. Explain the different precision machining processes
	5. Design jigs and fixtures for given application
TY MECH	1. Understand the process of powder metallurgy and its applications
PART 2	2. Calculate the cutting forces in orthogonal and oblique cutting
BTMEC601	3. Evaluate the machinability of materials
Manufacturing Processes -	4. Understand the abrasive processes
Π	5. Explain the different precision machining processes
	5. Design jigs and fixtures for given application
TY MECH	1. Define function of bearing and classify bearings.
PART 2	2. Understanding failure of bearing and their influence on its selection.
BTMEC602	3. Classify the friction clutches and brakes and decide the torque capacity
Machine Design - II	and friction disk parameter.
_	4. Select materials and configuration for machine element like gears, belts
	and chain
	5. Design of elements like gears, belts and chain for given power rating
	5. Design thickness of pressure vessel using thick and thin criteria
TY MECH	1. Apply first law of thermodynamics for closed systems and flow
PART 2	process. Produce TDS relations from Maxwell's relations.
BTMEC603	2. Calculate thermal efficiencies of heat engine.
Applied Thermodynamics –	3. Calculate work done and heat transfer for flow and non-flow process.
II	4. Calculate properties of air vapor mixture using mathematical
	knowledge and psychrometric chart.
TY MECH	1. Explain fuel injection systems in SI engine, types of combustion
PART 2	chamber and combustion process.
BTMEC604B	2. Explain different types of fuel injection system and combustion
IC Engines	chambers of CI engine.
_	3. Explain the mechanism of pollution formation and the evolution of
	emission norms.
	4. Describe the properties of various alternative fuels, engine modification
	required and emission characteristic of alternative fuels
	5. Discuss various ignition methods used in I.C engine and electronic
	engine management system.
B.Tech	1.Define sensor, transducer and understand the applications of different
Part 1	sensors and transducers
BTMEC701	2. Explain the signal conditioning and data representation techniques
Mechatronics	3. Design pneumatic and hydraulic circuits for a given application
	4. Write a PLC program using Ladder logic for a given application
	5. Understand applications of microprocessor and micro controller
	5. Analyse PI, PD and PID controllers for a given application
B.Tech	1. List and describe the various input and output devices for a CAD work
Part 1	station
BTMEC702	2.Carry out/calculate the 2-D and 3-D transformation positions (Solve
CAD/CAM	problems on 2- D and 3-D transformations)
	3. Describe various CAD modelling techniques with their relative

	Subject wise course Outcome 2021-22
	advantages and limitations4. Describe various CAD modelling techniques with their relative
	advantages and limitations 5. Develop NC part program for the given component, and robotic tasks
	5. Describe the basic Finite Element procedure
	7. Explain various components of a typical FMS system, Robotics, and
	CO8 Classify parts in part families for GT
	CO9 Describe and differentiate the CAPP systems
B.Tech	1. Differentiate clearly between NC and CNC machines
Part 1	2. Prepare and execute a part program for producing a given product
BTMEC703	3. Select appropriate non-traditional machining process for a given
Manufacturing	application
Processes - III	4. Compare different surface coating techniques
	5. Explain different rapid prototyping techniques
	5. Illustrate the working principle of various micro-manufacturing
	processes
B.Tech	1.Impart fundamental knowledge and skill sets required in the Industrial
Part I	Management and Engineering profession, which include the ability to
Industrial Engineering	apply basic knowledge of mathematics, probability and statistics, and the
and Management	domain knowledge of Industrial Management and Engineering
	2. Produce ability to adopt a system approach to design, develop,
	implement and innovate integrated systems that include people, materials,
	information, equipment and energy.
	3. Understand the interactions between engineering, businesses,
	technological and environmental spheres in the modern society.
	4. Understand their role as engineers and their impact to society at the
D Taab	1 Understand historical annlications of wind anarray
B. Iecii Dont 1	2. Understand instorical applications of while energy
Part I	2. Understand and explain which measurements and which data 2. Determine Wind Turking Dewer, Energy and Torque
BIMEC/05C	5. Determine wind Turbine Power, Energy and Torque
wind Energy	4. Understand and explain while Turbine Connected to the Electrical Network AC and DC
	5 Understand economics of wind energy
	5. Onderstand economics of while energy
B.Tech	1. To make the students aware of industrial culture and organizational
Part 1	setup
BTMEF710	2. To create awareness about technical report writing among the student
Field Training	
/Internship/Industrial	
Training III	
B.Tech	1.Acquire fundamental knowledge of the various systems of an
Part 2	automobile,
BTMEC801A	2. Associate the functions of each system with its design and layout,
Fundamentals of	depict the various systems using simple schematics, and apply concepts
Automotive Systems	learnt in core undergraduate courses to synthesize mathematical models of

	the various systems.
B.Tech	1. Demonstrate the generation of electricity from various Non-
Part 2	Conventional sources of energy, have a working knowledge on types of
BTMEC801F	fuel cells.
Non-Conventional Energy	2. Estimate the solar energy, Utilization of it, Principles involved in solar
Resources	energy collection and conversion of it to electricity generation.
	3. Explore the concepts involved in wind energy conversion system by
	studying its components, types and performance.
	4. Illustrate ocean energy and explain the operational methods of their
	utilization.
	5. Acquire the knowledge on Geothermal energy.
B.Tech	1.State the aim and objectives for this stage of the project
Part 2	2. Construct and conduct the tests on the system/product
BTMEP803	3. Analyze the results of the tests.
Project Stage-II	4. Discuss the findings, draw conclusions, and modify the system/product,
or	if necessary
Internship and Project*	

P.E.S College of Engineering Department of Mechanical Engineering

2021-22

Program Outcomes

1.Apply the knowledge of mathematics, basic sciences, and mechanical engineering to the solution of complex engineering problems.

2. Identify, formulate, research literature, and analyze complex mechanical engineering problems reaching substantiated conclusions.

3. Design solutions for complex engineering problems and design mechanical system components that meet the specified needs.

4. Use mechanical engineering research-based knowledge related to interpretation of data and provide valid conclusions.

5. Create, select, and apply modern mechanical engineering and IT tools to complex engineering activities with an understanding of the limitations.

6. Apply reasoning acquired by the mechanical engineering knowledge to assess societal and safety issues.

7. Understand the impact of engineering solutions on the environment, and demonstrate the knowledge for sustainable development.

8. Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.

9. Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.

10. Communicate effectively on complex engineering activities with the engineering community and with society at large.

11. Understand the engineering and management principles and apply these to the multidisciplinary environments.

12. Recognize the need for life-long learning in the broadest context of technological change.

Dr. Babasaheb Ambedkar Technological University, Lonere- 402103

P.E.S.College of Engineering, Aurangabad Department of Electronics and Computer Engineering

Course Coordinator : Prof. P.K.Ghuge

Course Name : Digital System Design

Course Code : BTETOE605A

Academic Year : 2021-2022

Semester I / II : II

Program Educational Objectives(PEO) and Program Specific Outcomes (PSO)

Year : 20 - 20 Semester : I / II

Program Educational Objectives (PEO)

1.	To equip graduates with a strong foundation in engineering sciences and Electronics & Telecommunication Engineering fundamentals to become effective collaborators, researchers and real-time problem solvers with technical competencies.
2.	Perceive the limitation and impact of engineering solutions in social, legal, environmental, economical and multidisciplinary contexts.
3.	Excel in Industry/technical profession, higher studies, and entrepreneurship exhibiting global competitiveness.

Program Specific Outcomes (PSO)

1.	Specify, design, build and test analog, digital for signal processing.
2.	Ability to design and implement the acquired technical knowledge with proficiency in logical programming for applications in electronics engineering.
3.	Apprehend and analyze specific engineering problems by applying the knowledge of basic sciences, engineering mathematics and engineering fundamentals.
4.	Ability to communicate effectively with excellent interpersonal skills and demonstrate the practice of professional ethics for societal benefit.

PROGRAM OUTCOMES: Upon successful completion of this course it is expected that

electronics graduate will be able to:

	Program Outcome
PO1.	Engineering Knowledge: Apply knowledge of mathematics, science, engineering fundamentals and an engineering specialization to the solution of complex engineering problems.
PO2.	Problem Analysis: Identify, formulate, research literature and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences and engineering sciences.
PO3.	Design/ Development of Solutions: Design solutions for complex engineering problems and design system components or processes that meet specified needs with appropriate consideration for public health and safety, cultural, societal and environmental considerations.
PO4.	Conduct investigations of complex problems :use research-based knowledge and research methods including design of experiments, analysis and interpretation of data and synthesis of information to provide valid conclusions.
PO5.	Modern Tool Usage: Create, select and apply appropriate techniques, resources and modern engineering and IT tools including prediction and modeling to complex engineering activities with an under- standing of the limitations.
PO6.	The Engineer and Society: Apply reasoning informed by contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to professional engineering practice.
PO7.	Environment and Sustainability: Understand the impact of professional engineering solutions in soci- etal and environmental contexts and demonstrate knowledge of and need for sustainable develop-ment.
PO8.	Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of engineering practice.
PO9.	Individual and Team Work: Function effectively as an individual, and as a member or leader in diverse teams and in multidisciplinary settings.
PO10.	Communication: Communicate effectively on complex engineering activities with the engineering com-munity and with society at large, such as being able to comprehend and write

	effective reports and design documentation, make effective presentations and give and receive
	clear instructions.
	Project Management and Finance: Demonstrate knowledge and understanding of engineering
PO11.	and management principles and apply these to one's own work, as a member and leader in a
	team, to manage projects and in multidisciplinary environments.
	Life long Learning, Decognize the need for and have the properties and chility to engage in
PO12.	Line-iong Learning: Recognize the need for and have the preparation and ability to engage in
	independent and life- long learning in the broadest context of technological change

Cou	Course Objective : As part of this course, Students				
1.	The concept and theory of digital Electronics are needed in almost all electronics and telecommunication engineering fields and in many other engineering and scientific disciplines as well.				
2.	The main objective of this course is to lay the foundation for further studies in areas such as communication, VLSI, computer, microprocessor etc. One of the most important reasons for the unprecedented growth of digital electronics is the advent of integrated circuits.				
3.	This course will explore the basic concepts of digital electronics.				

Cours	e Outcomes : At the end of course, the student will be able to
CO1	Design and analyze combinational logic circuits
CO2	Design & analyze modular combinational circuits with MUX/DEMUX, Decoder, Encoder
CO3	Design & analyze synchronous sequential logic circuits
CO4	Use HDL & appropriate EDA tools for digital logic design and simulation.

Mapping of Course Objective and Course Outcomes

Year : 20 - 20 Semester : I / II

Mapping of Course Outcomes (COs) with Program Outcomes (POs):												
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	1			~		1		1	1			
CO2		1			1					1		
CO3				1			1				1	
CO4			1			1						1

Mappin	Mapping of Course Outcomes (COs) with Program Specific Outcomes (PSO)						
	PO1	PO2	PO3	PO4	PO5		
CO1	1		1				
CO2		1			1		
CO3	1		1		✓		
CO4		1		1			

Bloom Levels: 1. Remember 2. Understand 3. Apply 4. Analysis 5. Create

No. of Lecture	Date	Topic / Sub - Topic	Course Outcome No. and Bloom Level	Refer (Text Book, Website) Page no. to
1		Introduction to Digital Electronics ,Logic Gates	1,2,3	N.G.Palan
2		Implementation of Logic Gates	1,2,3	N.G.Palan
3		Implementation of Universal Logic Gates	1,2,3	N.G.Palan
4		Standard representations for logic functions	1,2,3	N.G.Palan
5		Boolean algebra and Dep Morgan ^s 's Theorem,	1,2,3	N.G.Palan
6		Problem solving on Boolean Algebra	3,4	N.G.Palan
7		k map representation of logic functions SOP	2,3	N.G.Palan,S.P.Bali
8		k map representation of logic functions POS	2,3	N.G.Palan,S.P.Bali
9		minimization of logical functions for min-terms and max-terms	2,3,4	N.G.Palan,S.P.Bali
10		Problem Solving	2,3,4	N.G.Palan,S.P.Bali
11		don't care conditions,	2,3,4	N.G.Palan,S.P.Bali
12		5,6 variables k-map problem solving	2,3,4	N.G.Palan,S.P.Bali
13		Code converters - G to B,B to G	2,3	B.M.Bakwad
14		Code converters - B to EX-3,EX3 to B	2,3	B.M.Bakwad
15		Digital Comparator	2,3	B.M.Bakwad
16		Multiplexer and Multiplexer Tree	3,4,5	B.M.Bakwad
17		Design of Multiplexers	3,4,5	B.M.Bakwad
18		Demultiplexers, Decoders.	3,4,5	B.M.Bakwad
19		Arithmetic Circuits - HA,HS,FA,FS	2,3,4	B.M.Bakwad
20		Adders and their use as subtractor	2,3	B.M.Bakwad
21		BCD Adder, Barrel shifter and ALU	2,3	B.M.Bakwad

22	1 Bit Memory Cell, Building blocks like S-R	2	N.G.Palan,A.P.Godse
23	JK and Master-Slave JK FF, Edge triggered FF,D and T flip-flops	2	N.G.Palan,A.P.Godse
24	Conversion of flip flops	2,3	N.G.Palan,A.P.Godse
25	Registers, Shift registers,	3,4,5	N.G.Palan,A.P.Godse
26	Asynchronous counters	3,4,5	N.G.Palan,A.P.Godse
27	Design Problems on Asynchronous counters	3,4,5	N.G.Palan,A.P.Godse
28	synchronous counters	3,4,5	N.G.Palan,A.P.Godse
29	Design Problems on synchronous counters	3,4,5	N.G.Palan,A.P.Godse
30	up/down counters- Asynchronous ,Synchronous	3,4,5	N.G.Palan,A.P.Godse
31	Finite state machines, Design of synchronous FSM	3,4,5	A.P.Gods
32	Algorithmic State Machines charts.	3,4,5	A.P.Gods
33	Designing synchronous circuits like Pulse train generator	3,4,5	A.P.Gods
34	Pseudo Random Binary Sequence generator, Clock generation	3,4,5	A.P.Gods
35	TTL NAND gate, Specifications	2,3	A.P.Gods
36	Noise margin, Propagation delay, fan-in, fan-out	1,2,3	A.P.Gods
37	Tri State TTL, ECL, CMOS families and their interfacing	1,2,3	A.P.Gods
38	Concept of Programmable logic devices like FPGA	1,2	A.P.Gods
39	Logic implementation using Programmable Devices	2,3,4	A.P.Gods
40	Design entry: Schematic, FSM & HDL	1,2,3	A.P.Gods
41	different modeling styles in VHDL,Behavioral and Structural Modeling,	1,2,3	Pedroni V.A
42	Data types and objects, Dataflow,	1,2,3	Pedroni V.A
43	Synthesis and Simulation VHDL constructs and codes for combinational and sequential circuits.	3,4,5	Pedroni V.A

Dr. Babasaheb Ambedkar Technological University, Lonere- 402103

P.E.S.College of Engineering, Aurangabad

Department of Electronics and Computer Engineering

Course Coordinator: Dr. M. R. Rajput

Course Name : Python Programming

Course Code : BTETPE405E

Academic Year :2021-22

Semester II

Program Educational Objectives (PEO)

1.	Graduates will be able to succeed in positions in engineering practice or research, and in other fields they choose to pursue.
2.	Graduates will become a responsible member of society
3.	Graduates will be leaders, both in their chosen profession and in other activities
4.	Graduates will address the complexities of real life engineering problems and be able to formulate solutions that are technically sound, economically feasible and sustainable.

Program Specific Outcomes (PSO)

1.	Apply basic knowledge related to Electronic Circuits, Embedded & wireless communication Systems and Signal Processing to solve engineering/ societal problems in the field of Electronics and Telecommunication Engineering.
2.	Recognize and adapt to technical developments and to engage in lifelong learning and develop consciousness for professional, social, legal and ethical responsibilities
3.	Excellent adaptability to the changing industrial and real world requirements.

PROGRAM OUTCOMES: Upon successful completion of this course it is expected that electronics graduate will be able to:

	Program Outcome
PO1.	Engineering Knowledge: Apply knowledge of mathematics, science, engineering fundamentals and an engineering specialization to the solution of complex engineering problems.
PO2.	Problem Analysis: Identify, formulate, research literature and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences and engineering sciences.
PO3.	Design/ Development of Solutions: Design solutions for complex engineering problems and design system components or processes that meet specified needs with appropriate consideration for public health and safety, cultural, societal and environmental considerations.
PO4.	Conduct investigations of complex problems : use research-based knowledge and research methods including design of experiments, analysis and interpretation of data and synthesis of information to provide valid conclusions.
PO5.	Modern Tool Usage: Create, select and apply appropriate techniques, resources and modern engineering and IT tools including prediction and modeling to complex engineering activities with an under- standing of the limitations.
PO6.	The Engineer and Society: Apply reasoning informed by contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to professional engineering practice.
PO7.	Environment and Sustainability: Understand the impact of professional engineering solutions in societal and environmental contexts and demonstrate knowledge of and need for sustainable development.
PO8.	Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of engineering practice.
PO9.	Individual and Team Work: Function effectively as an individual, and as a member or leader in diverse teams and in multidisciplinary settings.

PO1	Communication: Communicate effectively on complex engineering activities with the
0.	engineering com-munity and with society at large, such as being able to comprehend and write

	effective reports and design documentation, make effective presentations and give and receive clear instructions.						
PO1 1.	Project Management and Finance: Demonstrate knowledge and understanding of engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.						
PO1 2.	Life-long Learning: Recognize the need for and have the preparation and ability to engage in independent and life- long learning in the broadest context of technological change						

Co	ourse Objective :
1.	To provide an understanding of the role computation can play in solving problems.
2.	To help students, including those who do not plan to major in Computer Science and Electrical Engineering, feel confident of their ability to write small programs that allow them to accomplish useful goals.
3.	To position students so that they can compete for research projects and excel in subjects with programming components

Course Outcomes : At the end of course, the student will be able to					
CO 1	Experience with an interpreted Language.				
CO 2	To build software for real needs				
CO 3	Prior Introduction to testing software				

Mapping of
Course Objective and Course
Outcomes

Mapping of Course Outcomes (COs) with Program Outcomes (POs):												
	РО 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO1 0	PO1 1	PO1 2
CO 1		~	V	~								
CO 2						~				~		
CO 3					~							

Mapping of Course Outcomes (COs) with Program Specific Outcomes (PSO)							
	PO1	PO2	PO3	PO4			
CO1	V	V	V				
CO2		V	V	V			
CO3			V	V			

Bloom Levels: 1. Remember 2. Understand 3. Apply 4. Analysis 5. Create

No. of Lectu re	Date	Topic / Sub - Topic	Course Outcom e No. and Bloom Level	Refer (Text Book, Website) Page no. to		
1	29/03/22	Unit 1 Introduction: History of Python, Need of Python Programming, features of python	remember	Core Python Programming, Dr. R. Nagsenvana Rao		
2	30/03/22	comparison between C, JAVA and Python, Applications Basics of Python Programming	remember	Core Python Programming, Dr. R. Nagsenvana Rao		
3	31/03/22	Using the REPL(Shell),	understand	Core Python Programming, Dr. R. Nagsenvana Rao		
4	01/04/22	Running Python Scripts	understand	Core Python Programming, Dr. R. Nagsenvana Rao		
5	05/04/22	Variables assignment, keywords	understand	Core Python Programming, Dr. R. Nagsenvana Rao		
6	06/04/22	Input functions, Output functions	understand	Core Python Programming, Dr. R. Nagsenvana Rao		
7	07/04/22	Unit 2 Types, Operators and Expressions: Types: Integers, strings	understand	Core Python Programming, Dr. R. Nagsenvana Rao		
8	08/04/22	bytes, bytes-array, list, tuple, range	understand	Core Python Programming, Dr. R. Nagsenvana Rao		
9	19/04/22	arithmetic operators, Assignment operators, unary operators	apply	Core Python Programming, Dr. R. Nagsenvana Rao		
10	20/04/22	Relational Operators, Logical Operators	Apply	Core Python Programming, Dr. R. Nagsenvana Rao		
11	21/04/22	Bitwise Operators, Membership Operators	Understan d	Core Python Programming, Dr. R. Nagsenvana Rao		

12	22/04/22	Identity Operators	understand	Core Python Programming, Dr. R. Nagsenvana Rao
12	26/04/22	Expressions and order of evaluations	applying	Core Python Programming, Dr. R. Nagsenvana Rao
13	27/04/22	Control Flow- if, if-elif-else	understand	Core Python Programming, Dr. R. Nagsenvana Rao
14	28/04/22	for, while break, continue, pass		Core Python Programming, Dr. R. Nagsenvana Rao
15	29/04/22	Unit 3 Data Structures Lists – Operations	understand	Core Python Programming, Dr. R. Nagsenvana Rao
16	03/05/22	Slicing, Methods; Tuples	apply	Core Python Programming, Dr. R. Nagsenvana Rao
17	04/05/22	Sets, Dictionaries,	apply	Core Python Programming, Dr. R. Nagsenvana Rao
18	05/05/22	Sequences, Comprehensions	apply	Core Python Programming, Dr. R. Nagsenvana Rao
19	06/05/22	Default Arguments , Variable- length arguments	apply	Core Python Programming, Dr. R. Nagsenvana Rao
20	07/05/22	Anonymous Functions,		Core Python Programming, Dr. R. Nagsenvana Rao
21	10/05/22	Fruitful Functions (Function Returning Values)	apply	Core Python Programming, Dr. R. Nagsenvana Rao
22	11/05/22	Scope of the Variables in a Function- Global and Local Variables		Core Python Programming, Dr. R. Nagsenvana Rao
23	12/05/22	Modules: Creating modules, import statement,	apply	Core Python Programming, Dr. R. Nagsenvana Rao
24	13/05/22	Import statement, name spacing, Python packages	apply	Core Python Programming, Dr. R. Nagsenvana Rao,
25	17/05/22	Introduction to PIP,	apply	Core Python Programming, Dr. R. Nagsenvana Rao
26	18/05/22	Installing Packages via PIP	apply	Core Python Programming, Dr. R. Nagsenvana Rao
27	19/05/22	Using Python Packages	apply	Core Python Programming, Dr. R. Nagsenvana Rao

21	20/05/22	Unit 5 Object-Oriented Programming OOP in Python: Classes	create	Core Python Programming, Dr. R. Nagsenvana Rao
22	24/05/22	self-variable Methods,	create	Core Python Programming, Dr. R. Nagsenvana Rao
23	25/05/22	Constructor Method	Analysis	Core Python Programming, Dr. R. Nagsenvana Rao
24	26/05/22	Inheritance	Analysis	Core Python Programming, Dr. R. Nagsenvana Rao
25	27/05/22	Overriding Methods	Analysis	Core Python Programming, Dr. R. Nagsenvana Rao
26	31/05/22	Data hiding, Error, and Exceptions	Analysis	Core Python Programming, Dr. R. Nagsenvana Rao
27	01/06/22	Difference between an error and Exception	Analysis	Core Python Programming, Dr. R. Nagsenvana Rao
28	02/06/22	Handling Exception	Analysis	Core Python Programming, Dr. R. Nagsenvana Rao
29	03/06/22	block, Raising Exceptions	Analysis	Core Python Programming, Dr. R. Nagsenvana Rao
30	07/06/22	User Defined Exceptions	Analysis	Core Python Programming, Dr. R. Nagsenvana Rao
31	08/06/22	Unit 6 Brief Tour of the Standard Library – Operating System Interface	Apply	Core Python Programming, Dr. R. Nagsenvana Rao
32	09/06/22	Pattern Matching, Mathematics	Apply	Core Python Programming, Dr. R. Nagsenvana Rao
33	10/06/22	Internet Access	Apply	Core Python Programming, Dr. R. Nagsenvana Rao
34	14/06/22	Dates and Times, Data Compression	Apply	Core Python Programming, Dr. R. Nagsenvana Rao
35	15/06/22	Multithreading,	Apply	Core Python Programming, Dr. R. Nagsenvana Rao
36	16/06/22	GUI Programming	Apply	Core Python Programming, Dr. R. Nagsenvana Rao
37	17/06/22	Turtle Graphics Testing: Why testing is required ?,	Create	Core Python Programming, Dr. R. Nagsenvana Rao
38	21/06/22	Basic concepts of testing	Create	Core Python Programming, Dr. R. Nagsenvana Rao

39	22/06/22	Unit testing in Python	Apply	Core Python Programming, Dr. R. Nagsenvana Rao
40	23/06/22	Writing Test cases, Running Tests	Apply	Core Python Programming, Dr. R. Nagsenvana Rao

Dr. Babasaheb Ambedkar Technological University, Lonere- 402103

P.E.S.College of Engineering, Aurangabad Department of Electronics and Computer Engineering

Course Coordinator: S.S. Khedgikar

Course Name: Basic Human Rights

Course Code: BTHM403

Academic Year: 2021-2022

Semester: II

Program Educational Objectives(PEO) and Program Specific Outcomes (PSO)

Year : 2021 -2022 Semester : II

Program Educational Objectives (PEO)

1	To equip graduates with a strong foundation in engineering sciences and Electronics & Telecommunication Engineering fundamentals to become effective collaborators, researchers and real-time problem solver with technical competencies.
2	Perceive the limitation and impact of engineering solutions in social, legal, environmental, economical and multidisciplinary contexts
3	Excel in Industry/technical profession, higher studies, and entrepreneurship exhibiting global competitiveness

1	Apply basic knowledge related to Electronic Circuits, Embedded & wireless communication Systems and Signal Processing to solve engineering/ societal problems in the field of Electronics and Telecommunication Engineering
2	Recognize and adapt to technical developments and to engage in lifelong learning and develop consciousness for professional, social, legal and ethical responsibilities.
3	Excellent adaptability to the changing industrial and real world requirements

PROGRAM OUTCOMES: Upon successful completion of this course it is expected that electronics graduate will be able to:

	Program Outcome
PO1.	Engineering Knowledge: Apply knowledge of mathematics, science, engineering fundamentals and an engineering specialization to the solution of complex engineering problems.
PO2.	Problem Analysis: Identify, formulate, research literature and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences and engineering sciences.
PO3.	Design/ Development of Solutions: Design solutions for complex engineering problems and design system components or processes that meet specified needs with appropriate consideration for public health and safety, cultural, societal and environmental considerations.
PO4.	Conduct investigations of complex problems :use research-based knowledge and research methods including design of experiments, analysis and interpretation of data and synthesis of information to provide valid conclusions.
PO5.	Modern Tool Usage: Create, select and apply appropriate techniques, resources and modern engineering and IT tools including prediction and modeling to complex engineering activities with an under- standing of the limitations.
PO6.	The Engineer and Society: Apply reasoning informed by contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to professional engineering practice.
PO7.	Environment and Sustainability: Understand the impact of professional engineering solutions in soci- etal and environmental contexts and demonstrate knowledge of and need for sustainable develop-ment.
PO8.	Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of engineering practice.
PO9.	Individual and Team Work: Function effectively as an individual, and as a member or leader in diverse teams and in multidisciplinary settings.

PO1	Communication: Communicate effectively on complex engineering activities with the
0.	engineering com-munity and with society at large, such as being able to comprehend and write

	-
	effective reports and design documentation, make effective presentations and give and receive clear instructions.
PO1 1.	Project Management and Finance: Demonstrate knowledge and understanding of engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.
PO1 2.	Life-long Learning: Recognize the need for and have the preparation and ability to engage in independent and life- long learning in the broadest context of technological change

Co	ourse Objective : As part of this course, Students
1.	To train the young minds facing the challenges of the pluralistic society and the rising conflicts and tensions in the name of particularistic loyalties to caste, religion, region and culture.
2.	To give knowledge of the major "signposts" in the historical development of human rights, the range of contemporary declarations, conventions, and covenants.
3.	To enable them to understand the basic concepts of human rights (including also discrimination, equality, etc.), the relationship between individual, group, and national rights.
4.	To develop sympathy in their minds for those who are denied rights.
5.	To make the students aware of their rights as well as duties to the nation
6.	

Cour	Course Outcomes : At the end of course, the student will be able to						
CO 1	Students will be able to understand the history of human rights.						
CO 2	Students will learn to respect others caste, religion, region and culture.						
CO 3	Students will be aware of their rights as Indian citizen.						
CO 4	Students will be able to understand the importance of groups and communities in the society.						
CO 5	Students will be able to realize the philosophical and cultural basis and historical perspectives of human rights.						
CO 6							

	Mapping of Course Objective and Course Outcomes	Year : 20 - 20 Semester : I / II
--	---	--

Mapping of Course Outcomes (COs) with Program Outcomes (POs):												
	PO 1	PO 2	РО 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO1 0	PO1 1	PO1 2
CO 1		~				~						
CO 2			~							~		
CO 3	>				~			~				
CO 4				~			~					>
CO 5		~							>		~	
CO 6												
CO 7												

Mapping of Course Outcomes (COs) with Program Specific Outcomes (PSO)							
	PO 1	PO 2	PO 3	PO 4	PO 5		
CO1	~						
CO2		~					
CO3	V						
CO4			~				
CO5		~					
CO6							

Teaching Plan	Year : 20 - 20 Semester : I / II
---------------	--

Bloom Levels: 1. Remember 2. Understand 3. Apply 4. Analysis 5. Create

No. of Lectur e	Date	Topic / Sub - Topic	Course Outco me No. and Bloom Level	Refer (Text Book, Website) Page no. to
1	28-3-20 22	The Basic Concepts: - Individual, group, civil society	1-1	Shastry, T. S. N., India and Human rights: Reflections, Concept Publishing Company India (P Ltd.), 2005
2	30-3-20 22	State, equality, justice	1-1	Shastry, T. S. N., India and Human rights: Reflections, Concept Publishing Company India (P Ltd.), 2005
3	4-4-202 2	Human Values, Human rights and Human Duties	2-1	Nirmal, C.J., Human Rights in India: Historical, Social and Political Perspectives(Law in India), Oxford India
4	6-4-202 2	Origin, Contribution of American bill of rights	2-2	Nirmal, C.J., Human Rights in India: Historical, Social and Political Perspectives(Law in India), Oxford India
5	11-4-20 22	French revolution. Declaration of independence	2-2	Nirmal, C.J., Human Rights in India: Historical, Social and Political Perspectives(Law in India), Oxford India
6	15-4-20 22	Rights of citizen, Rights of working and exploited people	3-2	Shastry, T. S. N., India and Human rights: Reflections, Concept Publishing Company India (P Ltd.), 2005

7	18-4-20 22	Fundamental rights and economic program	3-3	Shastry, T. S. N., India and Human rights: Reflections, Concept Publishing Company India (P Ltd.), 2005
8	20-4-20 22	Society, religion, culture, and their inter relationship	3-3	Nirmal, C.J., Human Rights in India: Historical, Social and Political Perspectives(Law in India), Oxford India
9	25-4-20 22	Impact of social structure on human behavior	4-2	Nirmal, C.J., Human Rights in India: Historical, Social and Political Perspectives(Law in India), Oxford India
10	27-4-20 22	Social Structure and Social Problems: - Social and communal conflicts and social harmony	4-4	Nirmal, C.J., Human Rights in India: Historical, Social and Political Perspectives(Law in India), Oxford India
11	29-4-20 22	rural poverty, unemployment, bonded labor.	4-4	Nirmal, C.J., Human Rights in India: Historical, Social and Political Perspectives(Law in India), Oxford India
12	2-5-202 2	Migrant workers and human rights violations	5-2	Shastry, T. S. N., India and Human rights: Reflections, Concept Publishing Company India (P Ltd.), 2005
13	6-5-202 2	human rights of mentally and physically challenged	4-1	Shastry, T. S. N., India and Human rights: Reflections, Concept Publishing Company India (P Ltd.), 2005
14	9-5-202 2	State, Individual liberty, Freedom and democracy	5-3	Nirmal, C.J., Human Rights in India: Historical, Social and Political Perspectives(Law in India), Oxford India
15	11-5-20 22	NGOs and human rights in India: - Land, Water, Forest issues.	5-5	Shastry, T. S. N., India and Human rights: Reflections, Concept Publishing Company India (P Ltd.), 2005

16	13-5-20 22	The constitution of India: Preamble	4-1	Nirmal, C.J., Human Rights in India: Historical, Social and Political Perspectives(Law in India), Oxford India
17	16-5-20 22	Fundamental rights	4-1	Nirmal, C.J., Human Rights in India: Historical, Social and Political Perspectives(Law in India), Oxford India
18	18-5-20 22	Directive principles of state policy	3-4	Nirmal, C.J., Human Rights in India: Historical, Social and Political Perspectives(Law in India), Oxford India
19	25-5-20 22	Fundamental duties	1-1	Shastry, T. S. N., India and Human rights: Reflections, Concept Publishing Company India (P Ltd.), 2005
20	31-5-20 22	Some other provisions	2-1	Nirmal, C.J., Human Rights in India: Historical, Social and Political Perspectives(Law in India), Oxford India
21	3-6-202 2	Universal declaration of human rights and provisions of India	1-2	Nirmal, C.J., Human Rights in India: Historical, Social and Political Perspectives(Law in India), Oxford India
22	6-6-202 2	Constitution and law. National human rights commission and state human rights commission.	3-3	Shastry, T. S. N., India and Human rights: Reflections, Concept Publishing Company India (P Ltd.), 2005

C: \Users\Kirti\Downloads\925	Dr. Babasaheb Ambedkar
083600s-removebg- preview.png	Technological
	University, Lonere- 402103

P.E.S.College of Engineering, Aurangabad

Department of Electronics and Computer Engineering

Course Coordinator : Prof.J.P.Zine

Course Name : BTETC401 Network Theory

Course Code :Academic Year : BTETC401

Semester I / II : II

Program Educational Objectives(PEO) and Program Specific Outcomes (PSO)	Year : 20 - 20 Semester : I / II
(PSO)	
(150)	

Program Educational Objectives (PEO)

1	To equip graduates with a strong foundation in engineering sciences and Electronics & Telecommunication Engineering fundamentals to become effective collaborators, researchers and real-time problem solver with technical competencies.
2	Perceive the limitation and impact of engineering solutions in social, legal, environmental, economical and multidisciplinary contexts.
3	Excel in Industry/technical profession, higher studies, and entrepreneurship exhibiting global competitiveness.

1	Apply basic knowledge related to Electronic Circuits, Embedded & wireless communication Systems and Signal Processing to solve engineering/ societal problems in the field of Electronics and Telecommunication Engineering.
2	Recognize and adapt to technical developments and to engage in lifelong learning and develop consciousness for professional, social, legal and ethical responsibilities.

2	Excellent adaptability to the changing	
5	industrial and real world requirements.	

Program Outcomes (PO)	Year : 20 - 20 Semester : I / II
Outcomes (10)	

PROGRAM OUTCOMES: Upon successful completion of this course it is expected that electronics graduate will be able to:

	Program Outcome	
PO1.	Engineering Knowledge: Apply knowledge of mathematics, science, engineering fundamentals and an engineering specialization to the solution of complex engineering problems.	
PO2.	Problem Analysis: Identify, formulate, research literature and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences and engineering sciences.	

PO3.	Design / Development of Solutions: Design solutions for complex engineering problems and design system components or processes that meet specified needs with appropriate consideration for public health and safety, cultural, societal and environmental considerations.
PO4.	Conduct investigations of complex problems :use research-based knowledge and research methods including design of experiments, analysis and interpretation of data and synthesis of information to provide valid conclusions.
PO5.	Modern Tool Usage: Create, select and apply appropriate techniques, resources and modern engineering and IT tools including prediction and modeling to complex engineering activities with an under- standing of the limitations.
PO6.	The Engineer and Society: Apply reasoning informed by contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to professional engineering practice.
PO7.	Environment and Sustainability: Understand the impact of professional engineering solutions in soci- etal and environmental contexts and demonstrate knowledge of and need for sustainable develop-ment.
PO8.	Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of engineering practice.

PO9.	Individual and Team Work: Function effectively as an individual, and as a member or leader in diverse teams and in multidisciplinary settings.
PO10.	Communication: Communicate effectively on complex engineering activities with the engineering com- munity and with society at large, such as being able to comprehend and write effective reports and design documentation, make effective presentations and give and receive clear instructions.
PO11.	Project Management and Finance: Demonstrate knowledge and understanding of engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.
PO12.	Life-long Learning: Recognize the need for and have the preparation and ability to engage in independent and life- long learning in the broadest context of technological change

Course Objective	Year : 20 - 20
and Course	Semester : I / II
Outcomes	

Course Objective : As part of this course, Students			
1.	To learn about the basic laws of electric circuits as well as the key fundamentals of the communication channels, namely transmission lines.		
2.	To understand the need of simplification techniques of complicated circuits		
3.	To learn about the comprehensive insight into the principle techniques available for characterizing circuits, networks and their implementation in practice		

4.	To learn about the use of mathematics, need of different transforms and usefulness of differential equations for analysis of networks.
5.	To train the students for handling analog filter design through theory of NA along with practical, this is basic requirement of signal processing field.

Course Outcomes : At the end of course, the	Course Outcomes : At the end of course, the student will be able to			
CO1	Apply knowledge of mathematics to solve numerical based on network simplification and it will be used to analyze thesame.			
CO2	Design passive filters and attenuators theoretically and practically. To apply knowledge for design of active filters as well as digital filters and even extend this to advance adaptive filters.			
CO3	Identify issues related to transmission of signals, analyze different RLC networks.			
CO4	Find technology recognition for the benefit of the society.			

Mapping of Course Objective and Course Outcomes	Year : 20 - 20 Semester : I / II
Outcomes	

Mapping of Course Outcomes (COs) with Program Outcomes (POs):												
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1 0	PO1 1	PO1 2
CO 1	YES	YES	YES		YES						YES	

CO 2	YES	YES	YES	YES						YES
CO 3	YES	YES	YES	YES		YES	YES	YES		
CO 4		YES		YES	YES	YES	YES	YES	YES	

Mapping of Course Outcomes (COs) with Program Specific Outcomes (PSO)						
	PSO1	PSO2	PSO3	PSO4	PO5	
CO1	YES	YES	YES			
CO2	YES	YES	YES			
CO3	YES		YES			
CO4	YES	YES				

	Year : 20 - 20
Teaching Plan	Semester : I / II

Bloom Levels: 1. Remember 2. Understand 3. Apply 4. Analysis 5. Create

No. of Lecture	Date	Topic / Sub - Topic	Course Outcome No. and Bloom Level	Refer (Text Book, Website) Page no. to
----------------	------	------------------------	---	--

1	<u>UNIT – 1</u> <u>Network</u> <u>Theorems: 07</u> <u>Hours</u> Basic nodal and mesh analysis, linearity,	
2	superposition and source transformation,	
3	Thevinin"s, Norton"s Threoms	D Roy Choudary, "Network and Systems" 1st edition, New Age International,1 988
4	maximum power transfer theorem and useful circuit analysis techniques,	
5	network topology	
6	introduction to SPICE in circuit analysis.	
7	introduction to SPICE in circuit analysis.	

r	* * *	
8	<u>UNIT – 2</u> <u>Transient</u> <u>Analysis and</u> <u>Frequency</u> <u>Domain</u> <u>Analysis: 07</u> <u>Hours</u> Transient Analysis: Source free RL and RC circuits	
9	unit step forcing function	
10	,source free parallel and series RLC circuit,	
11	response of the RLC circuit	D Roy Choudary, "Network and Systems" 1st edition, New Age International,1 988
12	lossless LC complete circuit.	
13	Frequency Domain Analysis: The phasor concept	
14	sinusoidal steady state analysis; AC circuit power analysis	

15	UNIT – 3 Laplace transform and its circuit applications: 07 Hours Laplace transform, initial and final value theorem circuit analysis in s domain, frequency response.	
16	Laplace transform,	Hayt, Kemmerley and Durbin, "Engineering Circuit Analysis"
17	initial and final value theorem	
18	circuit analysis in s domain	
19	circuit analysis in s domain	
20	frequency response.	
21	frequency response.	

22	UNIT - 4 Two Port Networks:97 Hours Two Port7 Hours Two PortNetworks: Z, Y, h and ABCD parameters analysis of interconnected (magnetically coupled) two port, three terminal networks.	
23	h and ABCD parameters	
24	analysis of interconnected (magnetically coupled) two port,	
25	analysis of interconnected (magnetically coupled) two port,	Hayt, Kemmerley and Durbin, "Engineering Circuit Analysis"
26	three terminal networks.	
27	three terminal networks.	
28	problems	

29	UNIT Variat Analy RL & Netwo Synth Hours State Analy variab norma equati	- 5 State ble sis and RC ork esis: 07 Variable sis: State les and l-form ons,	
30	State State Analy variab norma equati	Variable sis: State les and l-form ons,	
31	matrix solutio circuit equati	-based on of the cons	D Roy Choudary, "Network and Systems" 1st edition, New Age International,1 988
32	RL & Netwo Synth Synth one-po netwo	RC ork esis: esis of ort rks,	
33	RL & Netwo Synthe One-po netwo	RC ork esis: esis of ort rks,	
34	transfe function synthe	er on esis,	
35	basics design	of filter	

Dr. Babasaheb Ambedkar Technological University, Lonere- 402103

P.E.S.College of Engineering, Aurangabad Department of Electronics and Computer Engineering

Course Coordinator :Prof.V.R Kshirsagar

Course Name : Computer Architecture

Course Code :BTETC503

Academic Year : 2021-2022

Semester I / II : I

Program Educational Objectives(PEO) and Program Specific Outcomes (PSO)

Year : 20 - 20 Semester : I / II

Program Educational Objectives (PEO)

To equip graduates with a strong foundation in engineering sciences and Electronics & Telecommunication Engineering fundamentals to become effective collaborators, researchers and real-time problem solver with technical competencies.
Perceive the limitation and impact of engineering solutions in social, legal, environmental, economical and multidisciplinary contexts
Excel in Industry/technical profession, higher studies, and entrepreneurship exhibiting global competitiveness.

1	Apply basic knowledge related to Computer to solve engineering/ societal problems in the field of Electronics and Computer Engineering.
2	Recognize and adapt to technical developments and to engage in lifelong learning and develop consciousness for professional, social, legal and ethical responsibilities.
3	Excellent adaptability to the changing industrial and real world requirements

PROGRAM OUTCOMES: Upon successful completion of this course it is expected that

electronics graduate will be able to:

	Program Outcome		
PO1.	Engineering Knowledge: Apply knowledge of mathematics, science, engineering fundamentals and an engineering specialization to the solution of complex engineering problems.		
PO2.	Problem Analysis: Identify, formulate, research literature and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences and engineering sciences.		
PO3.	Design/ Development of Solutions: Design solutions for complex engineering problems and design system components or processes that meet specified needs with appropriate consideration for public health and safety, cultural, societal and environmental considerations.		
PO4.	Conduct investigations of complex problems :use research-based knowledge and research methods including design of experiments, analysis and interpretation of data and synthesis of information to provide valid conclusions.		
PO5.	Modern Tool Usage: Create, select and apply appropriate techniques, resources and modern engineering and IT tools including prediction and modeling to complex engineering activities with an under- standing of the limitations.		
PO6.	The Engineer and Society: Apply reasoning informed by contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to professional engineering practice.		
PO7.	Environment and Sustainability: Understand the impact of professional engineering solutions in soci- etal and environmental contexts and demonstrate knowledge of and need for sustainable develop-ment.		
PO8.	Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of engineering practice.		
PO9.	Individual and Team Work: Function effectively as an individual, and as a member or leader in diverse teams and in multidisciplinary settings.		

PO10.	Communication: Communicate effectively on complex engineering activities with the engineering com-munity and with society at large, such as being able to comprehend and write effective reports and design documentation, make effective presentations and give and receive clear instructions.
PO11.	Project Management and Finance: Demonstrate knowledge and understanding of engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.
PO12.	Life-long Learning: Recognize the need for and have the preparation and ability to engage in independent and life- long learning in the broadest context of technological change

Cours	e Outcomes : At the end of course, the student will be able to
CO1	learn how computers work
CO2	know basic principles of computer"s working
CO3	analyze the performance of computers
CO4	know how computers are designed and built
CO5	Understand issues affecting modern processors (caches, pipelines etc.)

|--|

Mapping of Course Outcomes (COs) with Program Specific Outcomes (PSO)					
	PO1	PO2	PO3	PO4	PO5
CO1	YES				
CO2	YES	YES			
CO3	YES	YES			
CO4	YES	YES	YES		
CO5	YES	YES	YES		

Bloom Levels: 1. Remember 2. Understand 3. Apply 4. Analysis 5. Create

No. of Lecture	Date	Topic / Sub - Topic	Course Outcome No. and Bloom Level	Refer (Text Book, Website) Page no. to
1	11/11/21	Basic Structure of Computers,	1,2&1,2	V.Carl Hammacher, "Computer Organisation"
2	15/11/21	Functional units,	1,2&1,2	—-DO—
3	17/11/21	software, performance issues software,	2,3&1,2	—-DO—
4	22/11/21	machine instructions and programs, Types of instructions,	1,2&1,2	—-DO—
5	1/12/21	Instruction sets: Instruction formats, Assembly language,	1,2&1,2	—-DO—
6	7/12/21	Stacks, Queues, Subroutines	1,2&1,2	—-DO—
7	8/12/21	Processor organization	4&1,2	A.S.Tanenbum, "Structured Computer Organisation",
8	13/12/21	Processor organization,	4&1,2	DO
9	14/12/21	Information representation,.	2&1,2	—-DO—
10	22/12/21	Information representation,.	2&1,2	—-DO—
11	27/12/21	number formats	2&1,2	—-DO—
12	29/12/21	number formats	2&1,2	—-DO—
13	11/1/22	Multiplication & division, ALU design,	4&1,2,34	—-DO—
14	12/1/22	Floating Point arithmetic	4&1,2	—-DO—
15	17/1/22	IEEE 754 floating point formats Control Design,	4&1,2	—-DO—

16	18/1/22	Instruction sequencing, Interpretation	2&1,2	—-DO—
17	19/1/22	Hard wired control - Design methods,	4&1,2,3, 4	—-DO—
18	24/1/22	CPU control unit.	4&1,2	—-DO—
19	25/1/22	Memory organization, device characteristics,	4&1,2	Hayes J.P, "Computer Architecture and Organization"
20	31/1/22	RAMS, ROM,	4&1,2	—-DO—
21	31/1/22	Memory management,	4&1,2	—-DO—
22	1/2/22	Concept of Cache &	4&1,2	DO
23	1/2/22	associative memories,	4&1,2	—-DO—
24	2/2/22	Virtual memory	4&1,2	—-DO—
25	2/2/22	System organization	5&1,2	—-DO—
26	7/2/22	System organization,	5&1,2	—-DO—
27	7/2/22	Input - Output systems Interrupt	5&1,2	—-DO—
28	8/2/22	DMA	5&1,2	—-DO—
29	8/2/22	Standard I/O interfaces	5&1,2	—-DO—
30	9/2/22	Standard I/O interfaces	5&1,2	DO
31	9/2/22	Parallel processing	5&1,2	—-DO—
32	12/2/22	Concept of parallel processing,	5&1,2	—-DO—
33	12/2/22	Concept of parallel processing,	5&1,2	DO
34	14/2/22	Pipelining,	5&1,2	DO
35	15/2/22	Forms of parallel processing,	5&1,2	—-DO—
36	15/2/22	interconnect network	5&1,2	—-DO—

Dr. Babasaheb Ambedkar Technological University, Lonere- 402103

P.E.S.College of Engineering, Aurangabad Department of Electronics and Computer Engineering

Course Coordinator : Prof. P.K.Ghuge

Course Name : Digital Electronics

Course Code : BTETC303

Academic Year : 2021-22

Semester I / II : I

Program Educational Objectives(PEO) and Program Specific Outcomes (PSO)

Year : 20 - 20 Semester : I / II

Program Educational Objectives (PEO)

1.	To equip graduates with a strong foundation in engineering sciences and Electroni & Telecommunication Engineering fundamentals to become effective collaborators researchers and real-time problem solvers with technical competencies.						
2.	Perceive the limitation and impact of engineering solutions in social, legal, environmental, economical and multidisciplinary contexts.						
3.	Excel in Industry/technical profession, higher studies, and entrepreneurship exhibiting global competitiveness.						

1.	Specify, design, build and test analog, digital and embedded systems for signal processing						
2.	Understand and architect wired and wireless analog and digital communication systems as per specifications, and determine their performance.						
3.	Ability to design and implement the acquired technical knowledge with proficiency in logical programming for applications in electronics engineering.						
4.	Apprehend and analyze specific engineering problems by applying the knowledge of basic sciences, engineering mathematics and engineering fundamentals.						
5.	Ability to communicate effectively with excellent interpersonal skills and demonstrate the practice of professional ethics for societal benefit.						

PROGRAM OUTCOMES: Upon successful completion of this course it is expected that

electronics graduate will be able to:

	Program Outcome
PO1.	Engineering Knowledge: Apply knowledge of mathematics, science, engineering fundamentals and an engineering specialization to the solution of complex engineering problems.
PO2.	Problem Analysis: Identify, formulate, research literature and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences and engineering sciences.
PO3.	Design/ Development of Solutions: Design solutions for complex engineering problems and design system components or processes that meet specified needs with appropriate consideration for public health and safety, cultural, societal and environmental considerations.
PO4.	Conduct investigations of complex problems :use research-based knowledge and research methods including design of experiments, analysis and interpretation of data and synthesis of information to provide valid conclusions.
PO5.	Modern Tool Usage: Create, select and apply appropriate techniques, resources and modern engineering and IT tools including prediction and modeling to complex engineering activities with an under- standing of the limitations.
PO6.	The Engineer and Society: Apply reasoning informed by contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to professional engineering practice.
PO7.	Environment and Sustainability: Understand the impact of professional engineering solutions in soci- etal and environmental contexts and demonstrate knowledge of and need for sustainable develop-ment.
PO8.	Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of engineering practice.
PO9.	Individual and Team Work: Function effectively as an individual, and as a member or leader in diverse teams and in multidisciplinary settings.
PO10.	Communication: Communicate effectively on complex engineering activities with the engineering com-munity and with society at large, such as being able to comprehend and write

	effective reports and design documentation, make effective presentations and give and receive
	clear instructions.
	Project Management and Finance: Demonstrate knowledge and understanding of engineering
PO11.	and management principles and apply these to one's own work, as a member and leader in a
	team, to manage projects and in multidisciplinary environments.
	Life long Learning, Decognize the need for and have the properties and chility to engage in
PO12.	Line-iong Learning: Recognize the need for and have the preparation and ability to engage in
	independent and life- long learning in the broadest context of technological change

Cou	Course Objective : As part of this course, Students						
1.	To acquaint the students with the fundamental principles of two-valued logic and various devices used to implement logical operations on variables.						
2.	To lay the foundation for further studies in areas such as communication, VHDL, computer.						
3.	Develop state diagrams Synchronous Sequential Circuits.						
4.	Analyze Mealy and Moore Models.						
5.	To acquire the basic knowledge of digital logic levels and application of knowledge to understand digital electronics circuits.						
6.	To prepare students to perform the analysis and design of various digital electronic circuits						

Course Outcomes : At the end of course, the student will be able to					
CO1	Use the basic logic gates and various reduction techniques of digital logic circuit in detail.				
CO2	Design combinational and sequential circuits.				
CO3	Design and implement hardware circuits to test performance and application.				
CO4	Understand the architecture and use of VHDL for basic operations and Simulate using simulation software.				

Mapping of Course Objective and Course Outcomes

Year : 20 - 20 Semester : I / II

Mapping of Course Outcomes (COs) with Program Outcomes (POs):												
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	1			1				1				
CO2		1		1			1		1			
CO3		1			1			1			1	1
CO4		1		1		1			1		1	

Mapping of Course Outcomes (COs) with Program Specific Outcomes (PSO)								
	PO1	PO2	PO3	PO4	PO5			
CO1	1		1					
CO2		1		1				
CO3		1						
CO4	1		1	1	1			
CO5	1				1			
CO6		1	1					

Bloom Levels: 1. Remember 2. Understand 3. Apply 4. Analysis 5. Create

No. of Lecture	Date	Topic / Sub - Topic	Course Outcome No. and Bloom Level	Refer (Text Book, Website) Page no. to	
1		Introduction to Digital Electronics ,Logic Gates	1,2,3	N.G.Palan	
2		Implementation of Logic Gates	1,2,3	N.G.Palan	
3		Implementation of Universal Logic Gates	1,2,3	N.G.Palan	
4		Standard representations for logic functions	1,2,3	N.G.Palan	
5		k map representation of logic functions SOP	2,3	N.G.Palan,S.P.Bali	
6		k map representation of logic functions POS	2,3	N.G.Palan,S.P.Bali	
7		minimization of logical functions for min-terms and max-terms	2,3,4	N.G.Palan,S.P.Bali	
8		Problem Solving	2,3,4	N.G.Palan,S.P.Bali	
9		don't care conditions	2,3,4	N.G.Palan,S.P.Bali	
10		Arithmetic Circuits - HA,HS,FA,FS	2,3,4	B.M.Bakwad	
11		BCD - to - 7 segment decoder	2,3	B.M.Bakwad	
12		Code converters - G to B,B to G	2,3	B.M.Bakwad	
13		Code converters - B to EX-3,EX3 to B	2,3	B.M.Bakwad	
14		Adders and their use as subtractor	2,3	B.M.Bakwad	
15		look ahead carry, ALU	2,3	B.M.Bakwad	
16		Digital Comparator	2,3	B.M.Bakwad	
17		Parity generators/checkers	2,3	B.M.Bakwad	
18		Multiplexer and Multiplexer Tree	3,4,5	B.M.Bakwad	
19		Design of Multiplexers	3,4,5	B.M.Bakwad	
20		Demultiplexers, Decoders.	3,4,5	B.M.Bakwad	
21		1 Bit Memory Cell, Clocked SR	2	N.G.Palan,A.P.Godse	
22		JK, MS J-K flip flop, D and T flip-flops	2	N.G.Palan,A.P.Godse	

23	Use of preset and clear terminals, Excitation Table for flip flops	2,3	N.G.Palan,A.P.Godse
24	Conversion of flip flops	2,3	N.G.Palan,A.P.Godse
25	Registers, Shift registers,	3,4,5	N.G.Palan,A.P.Godse
26	Asynchronous counters	3,4,5	N.G.Palan,A.P.Godse
27	Design Problems on Asynchronous counters	3,4,5	N.G.Palan,A.P.Godse
28	synchronous counters	3,4,5	N.G.Palan,A.P.Godse
29	Design Problems on synchronous counters	3,4,5	N.G.Palan,A.P.Godse
30	up/down counters- Asynchronous ,Synchronous	3,4,5	N.G.Palan,A.P.Godse
31	Sequence Generators, ripple Counter, definitions of lock out, Clock Skew, and Clock jitter	1,2,3	N.G.Palan,A.P.Godse
32	State diagram, State table, State reduction, State assignment	1,2,3	A.P.Godse
33	Mealy and Moore machines representation,	3,4,5	A.P.Godse
34	Implementation	3,4,5	A.P.Godse
35	finite state machine implementation,	3,4,5	A.P.Godse
36	Sequence detector.	3,4,5	A.P.Godse
37	Classification of logic families, Characteristics of digital ICs-Speed of operation.	1,2	https://in.video.search.ya hoo.com/video/play?p=lo
38	power dissipation, figure of merit, fan in, fan out, current and voltage parameters, noise immunity, operating temperatures and power supply requirements	1,2	children between the second se
39	TTL logic, Operation of TTL NAND gate, active pull up, wired AND, open collector output, unconnected inputs.	1,2	B.M.Bakwad
40	Tri-State logic. CMOS logic – CMOS inverter, NAND, NOR gates, unconnected inputs, wired logic, open drain output.	1,2	B.M.Bakwad

41	Interfacing CMOS and TTL, Comparison table of Characteristics of TTL, CMOS, ECL, RTL, I2 L and DCTL	1,2	B.M.Bakwad
42	Programmable logic devices: Detail architecture, Study of PROM, PAL, PLA, Designing combinational circuits using PLDs	1,2	B.M.Bakwad
43	General Architecture of FPGA and CPLD Semiconductor memories: memory organization and operation, expanding memory size	1,2	B.M.Bakwad
44	Classification and characteristics of memories, RAM, ROM, EPROM, EEPROM, NVRAM, SRAM, DRAM.	1,2	B.M.Bakwad
45	Introduction to VHDL: Behavioral – data flow, and algorithmic and structural description,	1,2	Pedroni V.A
46	lexical elements, data objects types, attributes, operators	1,2	Pedroni V.A
47	VHDL coding examples, combinational circuit design examples in VHDL and simulation.	3,4,5	Pedroni V.A

P.E.S.College of Engineering, Aurangabad Department of Electronics and Computer Engineering

Course Coordinator :Prof.V.R Kshirsagar

Course Name : Electronic Devices and Circuits

Course Code : BTETC302

Academic Year : 2021-2022

Semester I / II : I

Program Educational Objectives(PEO) and Program Specific Outcomes (PSO)

Year : 20 - 20 Semester : I / II

Program Educational Objectives (PEO)

1	To equip graduates with a strong foundation in engineering sciences and Electronics & Telecommunication Engineering fundamentals to become effective collaborators, researchers and real-time problem solver with technical competencies.
2	Perceive the limitation and impact of engineering solutions in social, legal, environmental, economical and multidisciplinary contexts
3	Excel in Industry/technical profession, higher studies, and entrepreneurship exhibiting global competitiveness.

1	Apply basic knowledge related to Electronic Circuits to solve engineering/ societal problems in the field of Electronics and Telecommunication Engineering.
2	Recognize and adapt to technical developments and to engage in lifelong learning and develop consciousness for professional, social, legal and ethical responsibilities.
3	Excellent adaptability to the changing industrial and real world requirements

PROGRAM OUTCOMES: Upon successful completion of this course it is expected that

electronics graduate will be able to:

	Program Outcome
PO1.	Engineering Knowledge: Apply knowledge of mathematics, science, engineering fundamentals and an engineering specialization to the solution of complex engineering problems.
PO2.	Problem Analysis: Identify, formulate, research literature and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences and engineering sciences.
PO3.	Design/ Development of Solutions: Design solutions for complex engineering problems and design system components or processes that meet specified needs with appropriate consideration for public health and safety, cultural, societal and environmental considerations.
PO4.	Conduct investigations of complex problems :use research-based knowledge and research methods including design of experiments, analysis and interpretation of data and synthesis of information to provide valid conclusions.
PO5.	Modern Tool Usage: Create, select and apply appropriate techniques, resources and modern engineering and IT tools including prediction and modeling to complex engineering activities with an under- standing of the limitations.
PO6.	The Engineer and Society: Apply reasoning informed by contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to professional engineering practice.
PO7.	Environment and Sustainability: Understand the impact of professional engineering solutions in soci- etal and environmental contexts and demonstrate knowledge of and need for sustainable develop-ment.
PO8.	Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of engineering practice.
PO9.	Individual and Team Work: Function effectively as an individual, and as a member or leader in diverse teams and in multidisciplinary settings.

PO10.	Communication: Communicate effectively on complex engineering activities with the engineering com-munity and with society at large, such as being able to comprehend and write effective reports and design documentation, make effective presentations and give and receive clear instructions.
PO11.	Project Management and Finance: Demonstrate knowledge and understanding of engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.
PO12.	Life-long Learning: Recognize the need for and have the preparation and ability to engage in independent and life- long learning in the broadest context of technological change

Cou	urse Objective : As part of this course, Students
1.	To introduce Static characteristics of ideal two terminal and three terminal devices.
2.	To introduce semiconductor devices BJT, JFET and MOSFET, their characteristics, operations, circuits and applications.
3.	To analyze and interpret BJT, FET and MOSFET circuits for small signal at low and high frequencies
4.	To simulate electronics circuits using computer simulation software and verify desired results.

Cours	e Outcomes : At the end of course, the student will be able to
CO1	Comply and verify parameters after exciting devices by any stated method.
CO2	Implement circuit and test the performance
CO3	Analyze BJT, JFET and MOSFET for various applications.
CO4	Analyze Feedback amplifiers and oscillators

Mapping of Course Objective and Course Outcomes

Year : 2021 - 2022

Mapping of Course Outcomes (COs) with Program Outcomes (POs):												
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	YES		YES			YES						YES
CO2	YES	YES	YES	YES	YES							
CO3	YES		YES			YES	YES					
CO4	YES	YES		YES								

Mapping of Course Outcomes (COs) with Program Specific Outcomes (PSO)								
	PO1	PO2	PO3	PO4	PO5			
CO1	YES	YES	YES					
CO2	YES	YES						
CO3	YES	YES	YES					
CO4	YES	YES	YES					

Bloom Levels: 1. Remember 2. Understand 3. Apply 4. Analysis 5. Create

No. of Lecture	Date	Topic / Sub - Topic	Course Outcome No. and Bloom Level	Refer (Text Book, Website) Page no. to
1	22/11/21	BJT: construction, working, characteristics, stability factor.	1,1&2	Boystad,Electronic Devices and Circuits
2	23/11/21	Transistor as switch, Transistor configurations, current gain equation,	1,1&2	do
3	25/11/21	BJT Biasing and basic amplifier configurations: Need for biasing BJT, BJT Biasing and basic amplifier configurations: Need for biasing BJT,	1,1&2	—-do—
4	26/11/21	Transistor as amplifier , Analysis of Single Stage Amplifier, RC coupled Amplifiers,	1,3,3&4	do
5	26/11/21	Effects of bypass and coupling capacitors, Frequency response of CE amplifier,	1,1&2	do
6	7/12/22	Emitter follower, Cascaded Amplifier, Need for multistage amplifiers	1,1&2	do
7	9/12/22	suitability of CE, CC and CB configurations in multistage amplifiers.	1,1&2	do
8	4/1/22	JFET and its characteristics, Pinch off voltage, Drain saturation current,	2,1&2	do
9	5/1/22	JFET amplifiers, ,Biasing the FET, The FET as VVR.	1,1&2	do
10	5/1/22	CS,CD,CG amplifiers ,their analysis using small signal JFET model	2,3,3&4	do
11	7/1/22	Small signal operation and models,	2,3	do
12	7/1/22	MOSFET: Overview of DMOSFET, EMOSFET, Power MOSFET, n MOSFET, p - MOSFET and CMOS devices, Handling precautions of CMOS devices, MOSFET as an Amplifier and Switch,	2,1&2	do
13	12/1/22	Biasing in MOSFET, Single stage MOS amplifier, MOSFET capacitances, CMOS Inverter,	2,1&2	do
14	12/1/22	Comparison of FET with MOSFET and BJT w.r.t. to device and Circuit parameter.	3,3	do

15	14/1/22	Introduction, classification of power amplifiers -A. B. AB. C and D.	4,1&2	do
16	18/1/22	transformer coupled class A amplifier,	4,1&2	do
17	19/1/22	Class B push pull	4,1&2	do
18	19/1/22	complementary symmetry amplifier, efficiency,,	4,1&2	do
19	20/1/22	calculation of power output, power dissipation	4,3	do
20	20/1/22	cross over distortion and its elimination methods	4,3	do
21	25/1/22	need of heat sink and its design.	4,3	do
22	28/1/22	Principle of Negative feedback in electronic circuits,,	4,1&2	do
23	28/1/22	Voltage series, Voltage shunt,	4,1&2	do
24	1/2/22	Current series, Current shunt types of Negative feedback,	4,1&2	do
25	2/2/22	Typical transistor circuits effects of Negative feedback on Input and Output impedance,	4,1&2	do
26	8/2/22	Voltage and Current gains, Bandwidth	4,1&2	do
27	9/2/22	Noise and Distortion	4,1&2	do
28	11/2/22	Revision	4	do
29	11/2/22	Principle of Positive feedback, Concept of Stability in electronics circuits,	4,1&2	do
30	14/2/22	Barkhausen criteria for oscillation,RC	4,1&2	do
31	17/2/22	Clapp, Wien Bridge, Colpitt,	4,1&2	—-do—
32	21/2/22	Hartley, Tuned LC,	4,1&2	—-do—
33	22/2/22	UJT, Relaxation Oscillators. Transistor application: Discrete transistor	4,1&2	do
34	25/2/22	voltage Regulation, series voltage regulator, shunt voltage regulator.	4,1&2	do
35	25/2/22	IC Voltage Regulators: Three terminal voltage regulator, Variable voltage regulator	4,1&3	do

P.E.S.College of Engineering, Aurangabad Department of Electronics and Computer Engineering

Course Coordinator: Niteen T. Kolambikar

Course Name: Electromagnetic Field Theory (EMFT)

Course Code: Academic Year: BTEXC501 (2022)

Semester I / II: I

Program Educational Objectives (PEO)

PEO 1.	Students will be able to engage in life-long learning and research including supportive and responsible roles on multi-disciplinary tasks.
PEO 2.	Students will acquire, use and develop skills as required for effective professional and societal practices and leadership quality.
PEO 3.	Students will be able to create a new dimension of innovation and entrepreneurship.
PEO 4.	Students will acquire, use and develop skills as required for effective professional and societal practices and leadership quality.

PSO 1.	Students will be able to understand the impact of engineering problems, solutions in a global and societal context.
PSO 2.	Students will be able to develop confidence for self-education and ability to engage in life-long learning.
PSO 3.	Students will be able to apply knowledge to design a system, component or process to meet desired needs within realistic constraints.
PSO 4.	Students will be able to communicate effectively through verbally, technical writing, reports and presentation.

PROGRAM OUTCOMES: Upon successful completion of this course it is expected that electronics graduate will be able to:

	Program Outcome
PO1.	Engineering Knowledge: Apply knowledge of mathematics, science, engineering fundamentals and an engineering specialization to the solution of complex engineering problems.
PO2.	Problem Analysis: Identify, formulate, research literature and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences and engineering sciences.
PO3.	Design/ Development of Solutions: Design solutions for complex engineering problems and design system components or processes that meet specified needs with appropriate consideration for public health and safety, cultural, societal and environmental considerations.
PO4.	Conduct investigations of complex problems :use research-based knowledge and research methods including design of experiments, analysis and interpretation of data and synthesis of information to provide valid conclusions.
PO5.	Modern Tool Usage: Create, select and apply appropriate techniques, resources and modern engineering and IT tools including prediction and modeling to complex engineering activities with an under- standing of the limitations.
PO6.	The Engineer and Society: Apply reasoning informed by contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to professional engineering practice.
PO7.	Environment and Sustainability: Understand the impact of professional engineering solutions in soci- etal and environmental contexts and demonstrate knowledge of and need for sustainable develop-ment.
PO8.	Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of engineering practice.
PO9.	Individual and Team Work: Function effectively as an individual, and as a member or leader in diverse teams and in multidisciplinary settings.

	Program Outcome
PO1.	Engineering Knowledge: Apply knowledge of mathematics, science, engineering fundamentals and an engineering specialization to the solution of complex engineering problems.
PO2.	Problem Analysis: Identify, formulate, research literature and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences and engineering sciences.
PO3.	Design/ Development of Solutions: Design solutions for complex engineering problems and design system components or processes that meet specified needs with appropriate consideration for public health and safety, cultural, societal and environmental considerations.
PO4.	Conduct investigations of complex problems :use research-based knowledge and research methods including design of experiments, analysis and interpretation of data and synthesis of information to provide valid conclusions.
PO10.	Communication: Communicate effectively on complex engineering activities with the engineering com-munity and with society at large, such as being able to comprehend and write effective reports and design documentation, make effective presentations and give and receive clear instructions.
PO11.	Project Management and Finance: Demonstrate knowledge and understanding of engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.
PO12.	Life-long Learning: Recognize the need for and have the preparation and ability to engage in independent and life- long learning in the broadest context of technological change

\checkmark		Year : 2021 -
623	Course Objective and Course Outcomes	2022 Semester : I / II

Cou	Course Objective : As part of this course, Students							
1.	Learners can be able to explore their knowledge in the area of EM Waves and its analysis.							
2.	To learn basic coordinate system, significance of divergence, gradient, curl and its applications to EM Waves.							
3.	To understand the boundary conditions for different materials /surfaces.							
4.	To get insight on finding solution for non-regular geometrical bodies using Finite Element Method, Method of Moments, Finite Difference Time Domain.							
5.	To get the basics of microwave, transmission lines and antenna parameters.							
6.	Students get acquainted with different physical laws and theorems and provide basic Platform for upcoming communication technologies.							

Cours	se Outcomes : At the end of course, the student will be able to
CO 1	Understand characteristics and wave propagation on high frequency transmission lines
CO 2	Carryout impedance transformation on TL
CO 3	Use sections of transmission line sections for realizing circuit elements
CO 4	Characterize uniform plane wave
CO 5	Calculate reflection and transmission of waves at media interface
CO 6	Analyze wave propagation on metallic waveguides in modal form

	Mapping of Course Objective and Course Outcomes	Year : 2021 - 2022 Semester : I / II
--	---	---

Mapping of Course Outcomes (COs) with Program Outcomes (POs):												
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1 0	PO1 1	PO1 2
CO1	X		X	X			X	X	X	X		X
CO2		X		X		X		X	X	X		X
CO3	X	X	X	X		X	X			X	X	X
CO4	X				X		X		X		X	X
CO5			X		X	X		X		X	X	

Mapping of Course Outcomes (COs) with Program Outcomes (POs):												
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1 0	PO1 1	PO1 2
CO1	X		X	X			X	X	X	X		X
CO2		X		X		X		X	X	X		X
CO3	X	X	X	X		X	X			X	X	X
CO6			X		X			X	X			
CO7				X		X						X

Mapping of Course Outcomes (COs) with Program Specific Outcomes (PSO)										
	PO1	PO2	PO3	PO4	PO5					
CO1	X	X		X	X					
CO2	Х		X		X					
CO3	X	X	X	X	X					
CO4		X	X		X					
CO5	X									
CO6	X	X		X	X					

Teaching Plan	Year : 2021 - 2022 Semester : I
---------------	------------------------------------

Bloom Levels: 1. Remember 2. Understand 3. Apply 4. Analysis 5. Create

No. of Lectur e	Date	Topic / Sub - Topic	Course Outcome No. and Bloom Level	Refer (Text Book, Website) Page no. to
1	18.09.202 1	Introduction to the subject & Over all syllabus	1&2	Given University Syllabus
2	21.09.202 1	UNIT-1 : Maxwell's Equations Basics of Maxwell's Equation & Vectors,	1,2&4	W. H. Hayt, "Engineering Electromagnetics
3	22.09.202 1	Vector calculus	1,2&4	Edminister, Schaum series, "Electromagnetics
4	25.09.202 1	Numerical on Vector Calculus.	1,2&4	Sarvate, "Electromagnetism
5	28.09.202 1	Basic laws of Electromagnetic	1,2&4	R.K. Shevgaonkar,
6	29.09.202 1	Details of Maxwell's Equations	1,2&4	E.C. Jordan & K.G. Balmain,
7	02.10.202 1	Boundary conditions at Media Interface	1,2&4	Narayana Rao, N: Engineering Electromagnetics
8	05.10.202 1	UNIT-2: Uniform Plane Wave Introduction to the Uniform plane wave	1,2&4	David Cheng, "Electromagnetics
9	06.10.202 1	Uniform plane wave, Propagation of wave	1,2&4	Sadiku, "Elements of Electromagnetics
10	09.10.202 1	Wave polarization, Poincare's Sphere,	1,2&4	Krauss, "Electromagnetics"
11	12.10.202 1	Wave propagation in conducting medium,	1,2&4	W. H. Hayt, "Engineering Electromagnetics
12	13.10.202 1	phase and group velocity	1,2&4	Edminister, Schaum series, "Electromagnetics
13	16.10.202 1	Power flow and Poynting vector	1,2&4	Sarvate, "Electromagnetism

No. of Lectur e	Date	Topic / Sub - Topic	Course Outcome No. and Bloom Level	Refer (Text Book, Website) Page no. to
1	18.09.202 1	Introduction to the subject & Over all syllabus	1&2	Given University Syllabus
2	21.09.202 1	UNIT-1 : Maxwell's Equations Basics of Maxwell's Equation & Vectors,	1,2&4	W. H. Hayt, "Engineering Electromagnetics
3	22.09.202 1	Vector calculus	1,2&4	Edminister, Schaum series, "Electromagnetics
4	25.09.202 1	Numerical on Vector Calculus.	1,2&4	Sarvate, "Electromagnetism
14	19.10.202 1	Numerical on Poynting vector	1,2&4	R.K. Shevgaonkar,
15	20.10.202 1	Surface current and power loss in a conductor	1,2 & 4	E.C. Jordan & K.G. Balmain,
16	23.10.202 1	UNIT – 3: Transmission Lines Basics of Transmission Lines & Equations of Voltage and Current on TX line,	1,2&4	Narayana Rao, N: Engineering Electromagnetics
17	25.10.202 1	Numerical on Equations of Voltage and Current on TX line	1,2&4	David Cheng, "Electromagnetics
18	26.10.202 1	Propagation constant and characteristic Impedance, and reflection coefficient.	1,2&4	Sadiku, "Elements of Electromagnetics
19	30.10.202 1	VSWR(Voltage Standing Wave Ratio)	1,2&4	Krauss, "Electromagnetics"
20	02.11.202 1	Impedance Transformation on Loss-less and Low loss Transmission line,	1,2&4	W. H. Hayt, "Engineering Electromagnetics
21	03.11.202 1	Power transfer on TX line	1,2&4	Edminister, Schaum series, "Electromagnetics
22	06.11.202 1	Smith Chart, Admittance Smith Chart	1,2&4	Sarvate, "Electromagnetism

No. of Lectur e	Date	Topic / Sub - Topic	Course Outcome No. and Bloom Level	Refer (Text Book, Website) Page no. to
1	18.09.202 1	Introduction to the subject & Over all syllabus	1&2	Given University Syllabus
2	21.09.202 1	UNIT-1 : Maxwell's Equations Basics of Maxwell's Equation & Vectors,	1,2&4	W. H. Hayt, "Engineering Electromagnetics
3	22.09.202 1	Vector calculus	1,2&4	Edminister, Schaum series, "Electromagnetics
4	25.09.202 1	Numerical on Vector Calculus.	1,2&4	Sarvate, "Electromagnetism
23	09.11.202 1	Practice of Smith Chart & Admittance Smith chart on Smith chart Papers.	1,2&4	R.K. Shevgaonkar,
24	10.11.202 1	Applications of transmission lines: Impedance Matching, use transmission line Sections as circuit elements.	1,2&4	E.C. Jordan & K.G. Balmain,
25	13.11.202 1	UNIT – 4: Plane Waves at a Media Interface Introduction to Plane waves & Media Interface	1,2&4	Narayana Rao, N: Engineering Electromagnetics
26	17.11.202 1	Mathematical analysis of Plane waves & Media Interface	1,2&4	David Cheng, "Electromagnetics
27	18.11.202 1	Plane wave in arbitrary direction, Reflection and refraction at dielectric interface	1,2&4	Sadiku, "Elements of Electromagnetics
28	20.11.202 1	Total internal reflection. Also Comparisons between Reflection, Refraction & Internal Reflection.	1,2&4	Krauss, "Electromagnetics" ,
29	22.11.202 1	wave polarization at media interface	1,2&4	W. H. Hayt, "Engineering Electromagnetics
30	23.11.202 1	Mathematical analysis of wave polarization	1,2&4	Edminister, Schaum series, "Electromagnetics

No. of Lectur e	Date	Topic / Sub - Topic	Course Outcome No. and Bloom Level	Refer (Text Book, Website) Page no. to
1	18.09.202 1	Introduction to the subject & Over all syllabus	1&2	Given University Syllabus
2	21.09.202 1	UNIT-1 : Maxwell's Equations Basics of Maxwell's Equation & Vectors,	1,2 & 4	W. H. Hayt, "Engineering Electromagnetics
3	22.09.202 1	Vector calculus	1,2 & 4	Edminister, Schaum series, "Electromagnetics
4	25.09.202 1	Numerical on Vector Calculus.	1,2&4	Sarvate, "Electromagnetism
31	27.11.202 1	Reflection from a conducting boundary.	1,2&4	Sarvate, "Electromagnetism
32	30.11.202 1	Numerical on all types of reflections & Polarizations.	1,2&4	R.K. Shevgaonkar,
33	01.12.202 1	UNIT – 5: Wave propagation Basics of Wave polarization & its types.	1,2&4	E.C. Jordan & K.G. Balmain,
34	04.12.202 1	Wave propagation in parallel plane waveguide	1,2&4	Narayana Rao, N: Engineering Electromagnetics
35	06.12.202 1	Analysis of waveguide general approach	1,2&4	David Cheng, "Electromagnetics
36	07.06.202 1	Rectangular waveguide, Modal propagation in rectangular waveguide	1,2&4	Sadiku, "Elements of Electromagnetics
37	11.12.202 1	Surface currents on the waveguide walls	1,2&4	Krauss, "Electromagnetics"
38	14.12.202 1	Field visualization	1,2&4	W. H. Hayt, "Engineering Electromagnetics
39	15.12.202 1	Attenuation in waveguide	1,2&4	Edminister, Schaum series, "Electromagnetics

No. of Lectur e	Date	Topic / Sub - Topic	Course Outcome No. and Bloom Level	Refer (Text Book, Website) Page no. to
1	18.09.202 1	Introduction to the subject & Over all syllabus	1&2	Given University Syllabus
2	21.09.202 1	UNIT-1 : Maxwell's Equations Basics of Maxwell's Equation & Vectors,	1,2&4	W. H. Hayt, "Engineering Electromagnetics
3	22.09.202 1	Vector calculus	1,2&4	Edminister, Schaum series, "Electromagnetics
4	25.09.202 1	Numerical on Vector Calculus.	1,2&4	Sarvate, "Electromagnetism
40	18.12.202 1	Numerical & Mathematical Modules on above topics.	1,2&4	Sarvate, "Electromagnetism
41	21.12.202 1	UNIT – 6 : Radiation Introduction to the Radiation, its types & applications.	1,2&4	R.K. Shevgaonkar,
42	22.12.202 1	Solution for potential function & its equations.	1,2&4	E.C. Jordan & K.G. Balmain,
43	25.12.202 1	Basic numericals on for potential function	1,2&4	Narayana Rao, N: Engineering Electromagnetics
44	28.12.202 1	Radiation from the Hertz dipole & Power radiated by hertz dipole	1,2&4	David Cheng, "Electromagnetics
45	29.12.202 1	Numerical on Hertz dipole & its power radiation.	1,2&4	Sadiku, "Elements of Electromagnetics
46	01.01.202 2	Introduction to the basics of Antenna & its types.	1,2&4	Krauss, "Electromagnetics"
47	04.01.202 2	Radiation Parameters of antenna, receiving antenna, Monopole and Dipole antenna	1,2&4	W. H. Hayt, "Engineering Electromagnetics
48	05.01.202 2	Numerical of radiation parameters of all types of Antenna.	1,2&4	Edminister, Schaum series, "Electromagnetics

No. of Lectur e	Date	Topic / Sub - Topic	Course Outcome No. and Bloom Level	Refer (Text Book, Website) Page no. to
1	18.09.202 1	Introduction to the subject & Over all syllabus	1&2	Given University Syllabus
2	21.09.202 1	UNIT-1 : Maxwell's Equations Basics of Maxwell's Equation & Vectors,	1,2 & 4	W. H. Hayt, "Engineering Electromagnetics
3	22.09.202 1	Vector calculus	1,2 & 4	Edminister, Schaum series, "Electromagnetics
4	25.09.202 1	Numerical on Vector Calculus.	1,2&4	Sarvate, "Electromagnetism
49	08.01.202 2	Revision of entire syllabus.	1,2&4	-
50	11.01.202 2	Discussion on Syllabus in exam point of view.	1,2&4	-

P.E.S.College of Engineering, Aurangabad Department of Electronics and Computer Engineering

Course Coordinator: Vinayak V. Kulkarni

Course Name: Financial Management (FM)

Course Code: Academic Year: BTHM705 (2022)

Semester I / II: I

Program Educational Objectives (PEO)

PEO 1.	Students will be able to engage in life-long learning and research including supportive and responsible roles on multi-disciplinary tasks.
PEO 2.	Students will acquire, use and develop skills as required for effective professional and societal practices and leadership quality.
PEO 3.	Students will be able to create a new dimension of innovation and entrepreneurship.
PEO 4.	Students will acquire, use and develop skills as required for effective professional and societal practices and leadership quality.

PSO 1.	Students will be able to understand the impact of engineering problems, solutions in a global and societal context.
PSO 2.	Students will be able to develop confidence for self-education and ability to engage in life-long learning.
PSO 3.	Students will be able to apply knowledge to design a system, component or process to meet desired needs within realistic constraints.
PSO 4.	Students will be able to communicate effectively through verbally, technical writing, reports and presentation.

PROGRAM OUTCOMES: Upon successful completion of this course it is expected that electronics graduate will be able to:

	Program Outcome
PO1.	Engineering Knowledge: Apply knowledge of mathematics, science, engineering fundamentals and an engineering specialization to the solution of complex engineering problems.
PO2.	Problem Analysis: Identify, formulate, research literature and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences and engineering sciences.
PO3.	Design/ Development of Solutions: Design solutions for complex engineering problems and design system components or processes that meet specified needs with appropriate consideration for public health and safety, cultural, societal and environmental considerations.
PO4.	Conduct investigations of complex problems :use research-based knowledge and research methods including design of experiments, analysis and interpretation of data and synthesis of information to provide valid conclusions.
PO5.	Modern Tool Usage: Create, select and apply appropriate techniques, resources and modern engineering and IT tools including prediction and modeling to complex engineering activities with an under- standing of the limitations.
PO6.	The Engineer and Society: Apply reasoning informed by contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to professional engineering practice.
PO7.	Environment and Sustainability: Understand the impact of professional engineering solutions in soci- etal and environmental contexts and demonstrate knowledge of and need for sustainable develop-ment.
PO8.	Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of engineering practice.
PO9.	Individual and Team Work: Function effectively as an individual, and as a member or leader in diverse teams and in multidisciplinary settings.

	Program Outcome
PO1.	Engineering Knowledge: Apply knowledge of mathematics, science, engineering fundamentals and an engineering specialization to the solution of complex engineering problems.
PO2.	Problem Analysis: Identify, formulate, research literature and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences and engineering sciences.
PO3.	Design/ Development of Solutions: Design solutions for complex engineering problems and design system components or processes that meet specified needs with appropriate consideration for public health and safety, cultural, societal and environmental considerations.
PO4.	Conduct investigations of complex problems :use research-based knowledge and research methods including design of experiments, analysis and interpretation of data and synthesis of information to provide valid conclusions.
PO10.	Communication: Communicate effectively on complex engineering activities with the engineering com-munity and with society at large, such as being able to comprehend and write effective reports and design documentation, make effective presentations and give and receive clear instructions.
PO11.	Project Management and Finance: Demonstrate knowledge and understanding of engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.
PO12.	Life-long Learning: Recognize the need for and have the preparation and ability to engage in independent and life- long learning in the broadest context of technological change

	Course Objective and Course Outcomes	Year : 2021 - 2022
		Semester : I / II

Co	urse Objective : As part of this course
1.	To help the students to develop cognizance of the importance of Financial Management in corporate valuation
2.	To enable students to describe how people analyze the corporate leverage under different conditions and understand why people valuate different corporate in different manner
3.	To provide the students to analyze specific characteristics of Supply Chain Industry and their future action for cash flow
4.	To enable students to synthesize related information and evaluate options for most logical and optima l solution such that they would be able to predict and control Debt Equity incurrence and improve results

Cours	se Outcomes : At the end of course, the student will be able to
CO 1	The students would be able to understand and define basic terminology used in finance and accounts
CO 2	The students would be able to prepare& appraise Financial Statements and evaluate a company in the light of different measurement systems.
CO 3	The students would be able to analyze the risk and return of alternative sources of financing.
CO 4	Estimate cash flows from a project, including operating, net working capital, and capital spending.
CO 5	To estimate the required return on projects of differing risk ,to estimate the cash flows from an investment project, calculate the appropriate discount rate, determine the value added from the project, and make a recommendation to accept or reject the project
CO 6	To describe and illustrate the important elements in project finance Using financial calculator and Excel in a variety of problems

	Mapping of Course Objective and Course Outcomes	Year : 2021 - 2022 Semester : I / II
--	---	---

Mapping	Mapping of Course Outcomes (COs) with Program Outcomes (POs):											
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1 0	PO1 1	PO1 2
CO1	X		X				X			X		X
CO2		X		X		X			X	X		X
CO3	X	X		X			X			X		X
CO4	X				X		X		X		X	X
CO5			X			X		X			X	

Mapping of Course Outcomes (COs) with Program Outcomes (POs):												
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1 0	PO1 1	PO1 2
CO1	X		X				X			X		X
CO2		X		X		X			X	X		X
CO3	X	X		X			X			X		X
CO6			X		X				X			

Mappi	Mapping of Course Outcomes (COs) with Program Specific Outcomes (PSO)						
	PO1	PO2	PO3	PO4	PO5		
CO1	X	X		X	X		
CO2	X		X		X		
CO3		X		X	X		
CO4		X	X		X		
CO5	X						
CO6	X	X		X	X		

Bloom Levels: 1. Remember 2. Understand 3. Apply 4. Analysis 5. Create

No. of Lectur e	Date	Topic / Sub - Topic	Course Outcome No. and Bloom Level	Refer (Text Book, Website) Page no. to
1	22.09.202 1	Introduction to the subject & Over all syllabus	1,2	University Syllabus
2	23.09.202 1	Introduction to Financial Accounting	1,2	Financial Management by Khan & Jain, Text, Problem & Cases, Tata McGraw HillPublication 5 th Edition
3	29.09.202 1	Book keeping & Recording: Meaning, Scope and importance of Financial Accounting	1,2	Financial Management by Khan & Jain.
4	30.09.202 1	Financial Accounting - concepts and conventions	1,2	Financial Management by Khan & Jain.
5	06.10.202 1	classification of accounts, Rules and principles governing Double Entry Book- keeping system	1,2	Financial Management by Khan & Jain.
6	07.10.202 1	governing Double Entry Book-keeping system, meaning	2,3	Financial Management by Khan & Jain.
7	13.10.202 1	Preparation of Journal, Ledger, Cash book & Trial balance	2,3	Financial Management by Dr. P.C.Tulsian, S Chand Publication 5 th Edition.
8	14.10.202 1	Preparation of financial statement and Profit & Loss Account,	3	Financial Management by Dr. P.C.Tulsian.
9	20.10.202 1	Preparation Balance Sheet	3	Financial Management by Dr. P.C.Tulsian.
10	18.11.202 1	Ratio Analysis - classification of various ratios	3,4	Financial Management by Dr. P.C.Tulsian.
11	24.11.202 1	Concept of business finance	3,4	Financial Management by Dr. P.C.Tulsian.
12	25.11.202 1	Goals & objectives of financial management	4,5	Financial Management by Dr. P.C.Tulsian.

No. of Lectur e	Date	Topic / Sub - Topic	Course Outcome No. and Bloom Level	Refer (Text Book, Website) Page no. to
1	22.09.202 1	Introduction to the subject & Over all syllabus	1,2	University Syllabus
2	23.09.202 1	Introduction to Financial Accounting	1,2	Financial Management by Khan & Jain, Text, Problem & Cases, Tata McGraw HillPublication 5 th Edition
3	29.09.202 1	Book keeping & Recording: Meaning, Scope and importance of Financial Accounting	1,2	Financial Management by Khan & Jain.
4	30.09.202 1	Financial Accounting - concepts and conventions	1,2	Financial Management by Khan & Jain.
13	01.12.202 1	Sources of financing, Long Term financing- shares, debentures	4,5	Financial Management by Khan & Jain.
14	02.12.202 1	Term loans, lease & hire purchase	2,3,4	Financial Management by Khan & Jain.
15	08.12.202 1	Retained earnings, public deposits, bonds	4	Financial Management by Khan & Jain.
16	09.12.202 1	Concept of working Capital, significance, types	4	Financial Management by Khan & Jain.
17	15.12.202 1	Adequacy of working capital, Factors affecting working capital needs	4	Financial Management by Khan & Jain.
18	16.12.202 1	financing approaches for working capital	4	Financial Management by Khan & Jain.
19	22.12.202 1	Methods of forecasting working capital requirements, Methods of Forecasting	4,5	Financial Management by Khan & Jain.
20	23.12.202 1	Concept of time value of money, Compounding & discounting	4,5	Financial Management by Khan & Jain.
21	29.12.202 1	Future value of single amount & annuity, present value of single amount & annuity	5	Financial Management by Khan & Jain.

No. of Lectur e	Date	Topic / Sub - Topic	Course Outcome No. and Bloom Level	Refer (Text Book, Website) Page no. to
1	22.09.202 1	Introduction to the subject & Over all syllabus	1,2	University Syllabus
2	23.09.202 1	Introduction to Financial Accounting	1,2	Financial Management by Khan & Jain, Text, Problem & Cases, Tata McGraw HillPublication 5 th Edition
3	29.09.202 1	Book keeping & Recording: Meaning, Scope and importance of Financial Accounting	1,2	Financial Management by Khan & Jain.
4	30.09.202 1	Financial Accounting - concepts and conventions	1,2	Financial Management by Khan & Jain.
22	05.01.202 2	Practical application of time value technique.	5	Financial Management by Khan & Jain.
23	06.01.202 2	Capital budgeting - Nature and significance	5	Financial Management by Dr. P.C.Tulsian.
24	12.01.202 2	Techniques of capital budgeting –Pay Back Method, Accounting rate of return	5	Financial Management by Dr. P.C.Tulsian.
25	13.01.202 2	Internal Rate of Return, DCF, Net Present Value and profitability index.	5	Financial Management by Dr. P.C.Tulsian.
26	13.01.202 2	Project Financing meaning and details	6	Financial Management by Dr. P.C.Tulsian.
27	15.01.202 2	Details of the company, its promoters and project finances required, profitability etc.	6	Financial Management by Dr. P.C.Tulsian.
28	15.01.202 2	Loan documentation	6	Financial Management by Dr. P.C.Tulsian.
29	19.01.202 2	Appraisal of terms loans by financial institutions	6	Financial Management by Dr. P.C.Tulsian.
30	19.01.202 2	Basic components of project finance.	6	Financial Management by Dr. P.C.Tulsian.

P.E.S.College of Engineering, Aurangabad

Department of Electronics and Computer Engineering

Course Coordinator: S.S. Khedgikar

Course Name: Probability Theory and Random Processes

Course Code: BTBS404

Academic Year: 2021-2022

Semester: II

Program Educational Objectives(PEO) and Program Specific Outcomes (PSO)

Year : 20 - 20 Semester : I / II

Program Educational Objectives (PEO)

1	To equip graduates with a strong foundation in engineering sciences and Electronics & Telecommunication Engineering fundamentals to become effective collaborators, researchers and real-time problem solver with technical competencies.
2	Perceive the limitation and impact of engineering solutions in social, legal, environmental, economical and multidisciplinary contexts
3	Excel in Industry/technical profession, higher studies, and entrepreneurship exhibiting global competitiveness

1	Apply basic knowledge related to Electronic Circuits, Embedded & wireless communication Systems and Signal Processing to solve engineering/ societal problems in the field of Electronics and Telecommunication Engineering
2	Recognize and adapt to technical developments and to engage in lifelong learning and develop consciousness for professional, social, legal and ethical responsibilities.
3	Excellent adaptability to the changing industrial and real world requirements

PROGRAM OUTCOMES: Upon successful completion of this course it is expected that electronics graduate will be able to:

	Program Outcome
PO1.	Engineering Knowledge: Apply knowledge of mathematics, science, engineering fundamentals and an engineering specialization to the solution of complex engineering problems.
PO2.	Problem Analysis: Identify, formulate, research literature and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences and engineering sciences.
PO3.	Design/ Development of Solutions: Design solutions for complex engineering problems and design system components or processes that meet specified needs with appropriate consideration for public health and safety, cultural, societal and environmental considerations.
PO4.	Conduct investigations of complex problems :use research-based knowledge and research methods including design of experiments, analysis and interpretation of data and synthesis of information to provide valid conclusions.
PO5.	Modern Tool Usage: Create, select and apply appropriate techniques, resources and modern engineering and IT tools including prediction and modeling to complex engineering activities with an under- standing of the limitations.
PO6.	The Engineer and Society: Apply reasoning informed by contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to professional engineering practice.
PO7.	Environment and Sustainability: Understand the impact of professional engineering solutions in soci- etal and environmental contexts and demonstrate knowledge of and need for sustainable develop-ment.
PO8.	Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of engineering practice.
PO9.	Individual and Team Work: Function effectively as an individual, and as a member or leader in diverse teams and in multidisciplinary settings.

PO1	Communication: Communicate effectively on complex engineering activities with the
0.	engineering com-munity and with society at large, such as being able to comprehend and write

	-							
	effective reports and design documentation, make effective presentations and give and receiv clear instructions.							
PO1 1.	Project Management and Finance: Demonstrate knowledge and understanding of engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.							
PO1 2.	Life-long Learning: Recognize the need for and have the preparation and ability to engage in independent and life- long learning in the broadest context of technological change							

Co	urse Objective : As part of this course, Students
1.	To develop basic of probability and random variables
2.	The primary objective of this course is to provide mathematical background and sufficient experience
3.	student can read, write, and understand sentences in the language of probability theory
4.	solve probabilistic problems in engineering and applied science.
5.	
6.	

Course Outcomes : At the end of course, the student will be able to					
CO 1	Understand representation of random signals				
CO 2	Investigate characteristics of random processes				
CO 3	Make use of theorems related to random signals				
CO 4	To understand propagation of random signals in LTI systems				
CO 5					
CO 6					

Mapping of	Year : 20 - 20
Course Objective and Course	Semester : I /
Outcomes	II

Mapping of Course Outcomes (COs) with Program Outcomes (POs):												
	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO1 0	PO1 1	PO1 2
CO 1						~			~			
CO 2		~										~
CO 3					~					~		
CO 4	~		~								~	
CO 5												
CO 6												
CO 7												

Mapping of Course Outcomes (COs) with Program Specific Outcomes (PSO)							
	PO 1	PO 2	PO 3	PO 4	PO 5		
CO1	~						
CO2			~				
CO3		~					
CO4		~					
CO5							
CO6							

Teaching Plan	Year : 20 - 20 Semester : I / II
---------------	--

Bloom Levels: 1. Remember 2. Understand 3. Apply 4. Analysis 5. Create

No. of Lectur e	Date	Topic / Sub - Topic	Course Outco me No. and Bloom Level	Refer (Text Book, Website) Page no. to
1	28-3-20 22	Introduction to Probability: Definitions, Scope and History	1-1	T. Veerrajan, "Probability, Statistics and Random Processes", Third Edition, McGraw Hill.
2	29-3-20 22	limitation of classical and relative-frequency-based definitions	1-2	Probability and Random Processes by Geoffrey Grimmett, DavidStirzaker
3	31-3-20 22	Sets, fields, sample space and events	1-2	"Probability and Random Processes with Applications to Signal Processing," Third Edition, PearsonEducation
4	4-4-202 2	axiomatic definition of probability, Combinatorics: Probability on finite sample spaces	1-2	Probability, random processes, and estimation theory for engineers by Henry Stark, John WilliamWoods.
5	5-4-202 2	Joint and conditional probabilities	2-2	Introduction to Probability Theory with Stochastic Processes, Springer International
6	7-4-202 2	independence, total probability	2-3	"Probability, Random Variables and Stochastic Processes," Fourth Edition, McGrawHill.
7	11-4-20 22	independence, total probability	2-3	Probability and Random Processes by Geoffrey Grimmett, DavidStirzaker

8	12-4-20 22	Definition of random variables, continuous and discrete random variables,	of random variables, continuous and 1-1 ndom variables,	
9	18-4-20 22	cumulative distribution function (cdf) for discrete and continuous random variables	1-2	Introduction to Probability, UBSPublishers
10	19-4-20 22	probability density functions (pdf) and properties	1-2	Probability, random processes, and estimation theory for engineers by Henry Stark, John WilliamWoods.
11	21-4-20 22	Jointly distributed random variables, conditional and joint density and distribution functions,	1-2	Introduction to Probability Theory with Stochastic Processes, Springer International
12	25-4-20 22	Function of one random variable, pdf of the function of one random variable	1-3	"Probability and Random Processes with Applications to Signal Processing," Third Edition, PearsonEducation
13	26-4-20 22	Function of two random variables; Sum of two independent random variables	3-3	Probability and Random Processes by Geoffrey Grimmett, DavidStirzaker
14	28-4-20 22	Expectation: mean, variance and moments of a random variable	3-3	T. Veerrajan, "Probability, Statistics and Random Processes", Third Edition, McGraw Hill.
15	2-5-202 2	conditional expectation; covariance and correlation; independent	3-4	Introduction to Stochastic Models, Harcourt Asia, AcademicPress.
16	3-5-202 2	Random vector: mean vector, covariance matrix and properties	3-4	"Probability, Random Variables and Stochastic Processes," Fourth Edition, McGrawHill.
17	5-5-202 2	Some special distributions: Uniform, Gaussian and Rayleigh distributions	2-1	Introduction to Probability, UBSPublishers
18	9-5-202 2	Binomial, and Poisson distributions; MultivariateGaussiandistribution	2-1	Probability, random processes, and estimation theory for engineers by Henry Stark, John WilliamWoods.

19	10-5-20 22	Vector-spacerepresentationofrandomvariables,linear independence, inner product 2-3		Introduction to Stochastic Models, Harcourt Asia, AcademicPress.
20	12-5-20 22	Schwarz Inequality, Moment-generating functions, Bounds and approximations	2-4	"Probability and Random Processes with Applications to Signal Processing," Third Edition, PearsonEducation
21	16-5-20 22	Tchebysheff inequality and Chernoff Bound	2-4	Introduction to Probability Theory with Stochastic Processes, Springer International
22	17-5-20 22	Almost sure convergence and strong law of large numbers	2-4	Probability, random processes, and estimation theory for engineers by Henry Stark, John WilliamWoods.
23	19-5-20 22	convergence in mean square sense with examples from parameter estimation	2-5	Introduction to Probability, UBSPublishers
24	23-6-20 22	convergence in probability with examples; convergence in distribution	2-5	Probability and Random Processes by Geoffrey Grimmett, DavidStirzaker
25	24-5-20 22	Central limit theorem and its significance	1-1	T. Veerrajan, "Probability, Statistics and Random Processes", Third Edition, McGraw Hill.
26	26-5-20 22	Random process: Probabilistic structure of a random process; mean, autocorrelation and auto - covariance functions	1-2	"Probability, Random Variables and Stochastic Processes," Fourth Edition, McGrawHill.
27	30-5-20 22	Stationarity: strict - sense stationary (SSS) and wide- sense stationary (WSS) processes	2-2	Introduction to Probability Theory with Stochastic Processes, Springer International
28	31-5-20 22	Autocorrelation function of a real WSS process and its properties, cross- correlation function	2-2	Probability and Random Processes by Geoffrey Grimmett, DavidStirzaker
29	2=6=20 22	Ergodicity and its importance, Power spectral density, properties of power spectral density	2-3	Probability, random processes, and estimation theory for engineers by Henry Stark, John WilliamWoods.

30	6-6-202 2	cross- power spectral density and properties; auto- correlation function and power spectral density of a WSS random sequence,	3-3	T. Veerrajan, "Probability, Statistics and Random Processes", Third Edition, McGraw Hill.
31	7-6-202 2	examples with white - noise as input; Examples of random processes: white noise process and white noise sequence;	3-4	"Probability, Random Variables and Stochastic Processes," Fourth Edition, McGrawHill.
32	9-6-202 2	Gaussian process; Poisson process, Markov Process	4-5	``Probability and Random Processes with Applications to Signal Processing," Third Edition, PearsonEducation

Dr. Babasaheb Ambedkar Technological University, Lonere- 402103

P.E.S.College of Engineering, Aurangabad Department of Electronics and Computer Engineering

Course Coordinator :Prof.V.R Kshirsagar

Course Name : Signals and Systems

Course Code :BTETC402

Academic Year : 2021-2022

Semester I / II : II

Program Educational Objectives(PEO) and Program Specific Outcomes (PSO)

Year : 20 - 20 Semester : I / II

Program Educational Objectives (PEO)

1	To equip graduates with a strong foundation in engineering sciences and Electronics & Telecommunication Engineering fundamentals to become effective collaborators, researchers and real-time problem solver with technical competencies.
2	Perceive the limitation and impact of engineering solutions in social, legal, environmental, economical and multidisciplinary contexts
3	Excel in Industry/technical profession, higher studies, and entrepreneurship exhibiting global competitiveness.

Program Specific Outcomes (PSO)

1	Apply basic knowledge related to Signal Processing to solve engineering/ societal problems in the field of Electronics and Telecommunication Engineering.
2	Recognize and adapt to technical developments and to engage in lifelong learning and develop consciousness for professional, social, legal and ethical responsibilities.
3	Excellent adaptability to the changing industrial and real world requirements

PROGRAM OUTCOMES: Upon successful completion of this course it is expected that

electronics graduate will be able to:

	Program Outcome
PO1.	Engineering Knowledge: Apply knowledge of mathematics, science, engineering fundamentals and an engineering specialization to the solution of complex engineering problems.
PO2.	Problem Analysis: Identify, formulate, research literature and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences and engineering sciences.
PO3.	Design/ Development of Solutions: Design solutions for complex engineering problems and design system components or processes that meet specified needs with appropriate consideration for public health and safety, cultural, societal and environmental considerations.
PO4.	Conduct investigations of complex problems :use research-based knowledge and research methods including design of experiments, analysis and interpretation of data and synthesis of information to provide valid conclusions.
PO5.	Modern Tool Usage: Create, select and apply appropriate techniques, resources and modern engineering and IT tools including prediction and modeling to complex engineering activities with an under- standing of the limitations.
PO6.	The Engineer and Society: Apply reasoning informed by contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to professional engineering practice.
PO7.	Environment and Sustainability: Understand the impact of professional engineering solutions in soci- etal and environmental contexts and demonstrate knowledge of and need for sustainable develop-ment.
PO8.	Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of engineering practice.
PO9.	Individual and Team Work: Function effectively as an individual, and as a member or leader in diverse teams and in multidisciplinary settings.

PO10.	Communication: Communicate effectively on complex engineering activities with the engineering com-munity and with society at large, such as being able to comprehend and write effective reports and design documentation, make effective presentations and give and receive clear instructions.
PO11.	Project Management and Finance: Demonstrate knowledge and understanding of engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.
PO12.	Life-long Learning: Recognize the need for and have the preparation and ability to engage in independent and life- long learning in the broadest context of technological change

Cou	rrse Objective : As part of this course, Students
1.	To understand the mathematical description of continuous and discrete time signals and systems.
2.	To classify signals into different categories
3.	To analyze Linear Time Invariant (LTI) systems in time and transform domains.
4.	To build basics for understanding of courses such as signal processing, control system and communication.

Cours	e Outcomes : At the end of course, the student will be able to
CO1	Understand mathematical description and representation of continuous and discrete time signals and systems
CO2	Develop input output relationship for linear shift invariant system and understand the convolution operator for continuous and discrete time system.
CO3	Understand and resolve the signals in frequency domain using Fourier series and Fourier transforms.
CO4	Understand the limitations of Fourier transform and need for Laplace transform and develop the ability to analyze the system in s-domain.

Mapping of Course Objective and Course Outcomes

Year : 20 - 20 Semester : I / II

Mapping of Course Outcomes (COs) with Program Outcomes (POs):												
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	YES	YES	YES									YES
CO2	YES		YES		YES			YES			YES	
CO3	YES	YES				YES						YES
CO4	YES	YES	YES	YES		YES						YES

Mapping of Course Outcomes (COs) with Program Specific Outcomes (PSO)									
	PO1	PO2	PO3	PO4	PO5				
CO1	YES								
CO2	YES	YES							
CO3	YES	YES	YES						

Bloom Levels: 1. Remember 2. Understand 3. Apply 4. Analysis 5. Create

No. of Lecture	Date	Topic / Sub - Topic	Course Outcome No. and Bloom Level	Refer (Text Book, Website) Page no. to
1		Introduction and Classification of signals: Definition of signal and systems, Continuous time and discrete time signal	1,1&2	Dr.Sanjay Sharma,Signals & Systems
2		Classification of signals as even, odd, periodic and non-periodic,Problems	1,1,2&3	—do—
3		deterministic and non-deterministic, energy and power, Problems	1,1,2&3	—do—
4		elementary signals used for testing: exponential, sine, impulse, step and its properties, ramp, rectangular, triangular, signum, sinc	1,1&2	—do—
5		Operations on signals: Amplitude scaling, addition, multiplication, differentiation, integration (Accumulator for DT), time scaling, time shifting and time folding,	1,1,2&3	—do—
6		Sampling Theorem and reconstruction of sampled signal, Concept of aliasing, examples on under sampled and over sampled signals.	1,1&2	—do—
7		Systems: Definition, Classification: linear and non-linear, time variant and invariant, causal and non-causal, static and dynamic, stable and unstable, invertible.	1,1,2&3	—do—
8		System modeling: Input-output relation,	2,1&2	J.S Katre,Signals & Systems
9		definition of impulse response,	2,1&2	do
10		convolution integral,	2,1&2	do
11		computation of convolution integral using graphical method	2,1,2&3	do
12		Computation of convolution sum.	2,1,2&3	do

13	Properties of convolution	2,1&2	—do—
14	properties of the system based on impulse response, step response in terms of impulse response	2,1&2	—do—
15	Fourier series (FS) representation of periodic Continuous Time (CT) signals,,	3,1&2	—do—
16	Dirichlet condition for existence of Fourier series	3,1&2	—do—
17	FS representation of CT signals using exponential Fourier series,	3,1,2&#</th><td>—do—</td></tr><tr><th>18</th><td>Fourier spectrum representation</td><th>3,1&2</th><td>—do—</td></tr><tr><th>19</th><td>properties of Fourier series,</td><th>3,1&2</th><td>do</td></tr><tr><th>20</th><td>Gibbs phenomenon,Discrete Time Fourier Series</td><th>3,1&2</th><td>do</td></tr><tr><th>21</th><th>Discrete Time Fourier series Properties</th><th>3,1&2</th><th>do</th></tr><tr><th>22</th><th>Fourier Transform (FT) representation of aperiodic CT signals, Dirichlet condition for existence of Fourier transform,</th><th>3,1&2</th><th>—do—</th></tr><tr><th>23</th><th>evaluation of magnitude and phase response,,</th><th>3,1&2</th><th>do</th></tr><tr><th>24</th><td>FT of standard CT signals, FT of standard periodic CT signals</td><th>3,1&2</th><td>—do—</td></tr><tr><th>25</th><td>Introduction to Fourier Transform of DT signals,</td><th>3,1&2</th><td>do</td></tr><tr><th>26</th><th>Properties of CTFT and DTFT,</th><th>3,1&2</th><th>do</th></tr><tr><th>27</th><td>Fourier Transform of periodic signals.</td><th>3,1&2</th><td>do</td></tr><tr><th>28</th><td>Concept of sampling and reconstruction in frequency domain, sampling of bandpass signal</td><th>3,1&2</th><td>do</td></tr><tr><th>29</th><td>Definition of Laplace Transform (LT), Limitations of Fourier transform and need of Laplace transform, ROC and its properties,</td><th>4,1&2</th><td>do</td></tr><tr><th>30</th><td>properties of Laplace transform, Laplace transform evaluation using properties,</td><th>4,1&2</th><td>—do—</td></tr><tr><th>31</th><td>Inverse Laplace transform based on partial fraction expansion,</td><th>4,1&2</th><td>—do—</td></tr><tr><th>32</th><td>Application of Laplace transforms to the LTI systemanalysis.</td><th>4,1&2</th><td>do</td></tr><tr><th>33</th><td>Introduction to Z-transform, and its properties,</td><th>4,1&2</th><td>do</td></tr></tbody></table>	

34	Inverse Z-tr	-transfor ransform	rm, diff 1,	erent	methods	of	4,1&2	—do—
35	Z-transform analysis.	n for	discrete	time	system	LTI	4,1&2	—do—

SY-CSE (2021-22) RESULT ANALYSIS 4th SEMISTER

Sr. No.	Full Name	SGPA	CGPA	%	Resu
1	ZORE AAKASH GAJANAN				FAII
2	GUJJARWAR AARTI RAJU	6.7	8.6	81	PAS
3	WAGH ABHUEET BHASKAR				FAIL
4	KAMBLE ABHUEFT SHRAVAN	6.96	8.44	79.4	PASS
5	NATH ADITYA KUMAR SURENEDRA	6.61	8.5	80	PASS
6	MANDVE AMEYA MOHAN	5.65	8.31	78.1	PASS
7	SONAWANE ANIKET KAILAS				FAIL
8	KARHALE ASHISH HARI	6.78			PASS
9	BANKAR BHAGWAT SHRIDHAR	6.26	7.58	70.8	PASS
10	JADHAV BUDDHABHUSHAN PRABHAKAR				FAIL
11	SYED DANISH ALL TALLEEFO ALL				FAIL
12	KHAN DANISH MINHAL				FAIL.
13	RAGHU DIPAK CHHAGAN				FAIL
14 1	FAIZ KHAN FEROZ KHAN	7	8.65	81.5	PASS
15	KHAN FARHAN NASIR				FAIL.
16	AAGALE GAUPAV SURHASH	5.83	7.88	73.8	PASS
17 5	SONAWANE CALIBAV RAVINDRA	6.87	8.6	81	PASS
19 10	CHUMPE HARSHADA DAVANESHWAR	7.22	8.6	81	PASS
10 10	SANGADHAR HRITIK SANIAY	8.04	8.77	82.7	PASS
20 1	ACDALE LAGANNATH KASHINATH				FAIL
20 0	AUDALE MOANTATII AND AUTO	6.3	8.25	77.5	PASS
22 1	HAN ATTER HAN SAMI	6.09	8.2	77	PASS
22 1	ADUAV KUNAL KAILASH				FAIL
23 11	AVVAD MORIN AVVUR				FAIL
24 5	IOUAMMED KHIZER MOHAMMED FEROZ	6.52	8.35	78.5	PASS
25 M	A ROOOLIL MOHAMMED OLIRRAM MOHAMMED	6	8.27	77.7	PASS
20 17/	AROOQUT MOHAMMED QURACHT MOHD ANWARU	6	8.04	75.4	PASS
17 CI	HISHIY MORD AFRALCODIT MORD THAT HE	6.3	8.19	76.9	PASS
8 VI	HARE OM SANTRAM	5.96	7.76	77.6	PASS
9 SA	DAWARTE PALLAVI SANJAT	5.91	7.71	77.1	PASS
0 M	UGDAL PRADNYA BRIMRAO	7.65	8.81	83.1	PASS
1 GC	DSAVI PRAFULL VILASPURI	6.65	8.01	77.5	PASS
2 PA	NDAGALE PRASENJEET TRYAMBAN	6.04	7.7	73	PASS
3 TU	PARE PRATIKSHA KAMESH	\$ 65	7.72	72.3	DACC
1 WA	GHMARE PRIVANSHU VDAY	5,03	7.75	74.5	DASS
S QU	ADRI SYED UZAIF SYED SALEEM	6.04	7.93	72.5	DACC
CH	AVAN ROHIT RAJESH	6.61	8.01	75.1	page
TU	PE RUSHIKESH PARASRAM	6.12	8.01	75.1	PASS
BIN	AFIF SAAD RUBAIYA	6.13	8.12	76.7	PASS
SAL	VE SAKSHI RAMAKANT	0.1.3	a.1.5	70.3	PASS
PAT	TL SANKET SURESH	6.44	7.00		PAIL
PAT	ANKAR SAPNA BHAGAWANRAO	0.04	7.96	74.6	PASS
RAT	THOD SARIKA GOVIND				FAIL
SHA	IKH MOHAMAD ARSHIYAN MOHAMAD				FAIL

44.1	SHAIKH ZIA AHMED IALIL AUMED				FAIL
45	RAJGURU SIDDHANT ASHOV	-	-		PASS
46.	NAKHARE SUDARCHAN BLOWN	5.4	8		PASS
47.	SHINDE SUBALIKARAN RAGHU	6.2	2 7.7	1 72.1	PASS
1.0	SHINDE SURAJ KASHINATH	6.1	3 8.0	1 /5.1	EAU
+5	SARDAR SURAJKUMAR ANILKUMAR		_		DASS
49	SADAWARTE SURBHI JITENDRA	6.39	9 7.99	9 74.9	PASS
50	PATHARE TANMAY BABASAHEB				FAIL
51	JAYBHAYE TEJAS ARUN				FAIL
-52	KANKAL TEJAS RAJENDRA			-	FAIL
53	ANSARI UZAIR AHMAD ANSARI ABDUL			-	FAIL
54	JAGTAP VAIBHAV KAILAS				PAIL
55	BODKHE VIKAS SHIVAJI	6.61	8.15	76.5	PASS
56	KADU VISHAL MANOHARAO			-	FAIL
27	WACH VASH DEEPAK	6.09	8.06	75.6	PASS
21	WAGH TASH DELTAR			-	FAIL
28	AUTEVASU ANANTRAO	6.83	8.35	78.5	PASS
59	AUTI YASH ANANTKAO				FAIL
60	ANKUSH YASH SURESH	6.48	8.13	76.3	PASS
61	BAMNAWAT TOOTTA RAMERICAN	6.96	8.26	77.6	PASS
62	SHAIKH ZAID SHAIKH SATELD				FAIL
6.5	SHAHAPUKKAK AADUJII AIMU	7,74	8.9	84	PASS
04	LANDGE NACSEN SUNI	5.87	7,7	72	PASS
60	NADWADE VAISHALLDADASAHER	6.52	7.02	65.2	PASS
60	WACHMARE KANCHAN DHONDIBA	6.61	7.81	73.1	PASS
69	NITURE VISHAL MALLIKARJUN	5.96	7.23	67.3	PASS
60	BHARTI VINOD KUNJBIHARI				FAIL
70	HALNOR SAYLEE SHANKAR		-		FAIL
71	KHARAT DHAMMADEEP KAILAS				FAIL
72	SAVYED SAMEER SAYYED SHAKER	6.43	7.6	71	PASS
73	WANKHADE KUNAL SAHEBRAO				FAIL
74	MUGDAL ROHAN MADHUKAR				FAIL
75	GAIKWAD RUTUJA DAYANAND				FAIL
76	OUAZI ALINA AYESHA QUAZI HYDER MOHIUDI	6.74	7.79	72.9	PASS
77	TANDALE SUPRIYA SANTOSH	6.65	7.66	71.6	PASS
78	HASHMI AMMAR IRSHAD				FAIL
79	KHURDE SHRUTIKA VILAS				FAIL
80	SATHE JAY KAILAS	5.87	7.04	65.4	PASS
81	PATIL POOJA SUKALAL	6.78	7.45	69.5	PASS
82	PATIL SHOURESH SHIVAJI		1		FAIL
83	INAMDAR ALTAMASH AFJAL				FAIL
84	CHAUDANTE VAISHNAVI BHIMRAO	6.39	7.64	71.4	PASS
85	KAMBLE TEJASWI ARVIND				FAIL
86	SURUSHE CHAITALI MINESH	7.17	7.87	73.7	PASS
87	TATHE SAKSHI RAVINDRA	6.83	7.62	71.2	PASS
8.8	TATHE SEJAL RAVINDRA	7.26	7.83	73.3	PASS
89	SARDAR AJINKYA MANOHAR				FAIL.
90	PATIL ABHISHEK JAIDEEP				FAIL
91	INGALE KANCHAN SURYAKANT	7,13	7.83	73.3	PASS
92	HARNE RUSHIKESH VITTHALRAO	6.74	7.7	72	PASS
01	KHAIRE RUPALI BHAUSAHEB	6.04	7.23	67.3	PASS

94	PAWAR BHAKTIN				
95	GANRAJ POQIA				
96	VAUWADE VAU	1	5.90	73 L	PAGE 1
97	KARALE DAISHNAVI NARAYAN	10	- 44	53.91	March.
98	SHIPCING RAJASAB MADHAV	2.10	1.11		Pare
00	SHIKGIRE SHRINIVAS SHIVA IIR AM	6.6	2.31		
100	DHIWAR PRATIKSHA MAREAN	-			1000
100	MD FAIZAN BASRAVI AMAR DAVID	-			2011
101	MATE ROHIT MILIND	11			
102	HANFI SAIF ASLAM				
	SIDDIOUI MOHT ASUBA A COMPANY	1 3 9			
103	MOHD SALAHUDDIN				
104	KARDILF OMKAR AND				÷
105	MOHAMMED SAAD MOUANISHED & SHEED		-		
106	RAJPUT KIRAN GULARSINGU	-	1		
107	SAWANT SAYALLGHANSHYAM	1			1.11
108	SHEJUL GAURI ASHOK	1	7.22-	112	244.0
109	VUAPURE KESHAV MAROTI		1		TONI .

Total Result :

The second se	109	100%
Appeared	62	56.00%
Pass	47	43.10%
total fail	0	10 th
Pass Class		194
Second Class	9	+ 2 ha
First Class	D.	3.30%
Distinction	54	49.54%

subjectwise result analysis :

subject	Pass	Pass %	fail		Pass	Pass Class	Secon	Second		First		
DAA	102	93 58%	tan	fail%	Class	%	Class	%	First	Class	Distinct	Distincti
OS	06	00 000	1	6.40%	20	18.34%	20	10.745	C-1035	70	1011	UN 70
HR	70	08.07%	13	11.92%	.58	11.030		10,34%	40	36.68%	22	20.18%
Entre a	108	99.08%	I	0.000	40	44.0.5%	13	11.92%	28	25.68%	6	5.50%
PT&R	87	70 810/		0.90%	20	18.34%	14	12.84%	51	46.79%	23	21.10%
DLD	(0	17.0170	22	20.18%	47	43.11%	13	11.02%	24	22 01%	3	1.57%
OC 8 DI COL	08	62.38%	41	37.61%	47	43 1194	10	0.170/		10.000/	0	0%
US&PYTH(109	100%	0	0.0.4		43.1170	10	9.1/%	1.1	10.09%		
SEMINAR-	105	06 2204		0%	2	4.58%	2	1.83%	25	22.93%	77	70.64%
	103	90.35%	4	3.67%	0	0%	0	0%	13	11.92%	92	84.40%

Class Teacher Prof. B.S.Pawar

H.O.D.

Dr. V. B. Kamble

SY-CSE (2021-22) RESULT ANALYSIS 3rd SEMISTER

r. No	Enrollment Number	Full Name	SGPA	CGPA	%	Resu
1	PRN-T2021341242001	ZORE AAKASH GAIANAN	8.29	8.62	81.	PASS
2	PRN T2021341242002	GUILARWAR AARTI RAIU	9	9.33	88	PASS
3	PRN-T2021341242002	WACH ABRUCET BHASKAR	8.83	9.18	86.1	PASS
4	PRN-T3021341242003	WAGH ABRITET SURAVAN	8.54	9	8	PASS
5	PRN-T2021341242004	NAMBLE ABRIDELT SHRAPPON	9	9.23	87.	PASS
6	PRN. 72021341242005	NATH ADITA KOMAR JOSEREDM	9.04	9.33	88.	PASS
7	PRN-T2021341242007	MANDVE AMERA MORIAN	8.17	8.66	81.	PASS
	PRN-12021341242008	SUNAWANE ANIKET KALAS	8.21			Fail
0	PRN:12021341242009	KARHALE ASHISH HANI	7.33	8.08	.753	PASS
30	PRN:12021341242010	BANKAR BHAGWAT SHRIDHAR				Fail
10	PKN:12021341242011	JADHAV BUDDHABHUSHAN PRADHABAR	8.54	8.77	82.7	PASS
11	PRN:12021341242012	SYED DANISH ALI TAUFEEQ AU	8.29	8.77	82	PASS
12	PRN:T2021341242013	KHAN DANISH MINHAJ	8.54	8.84	83.4	PASS
15	PKN:12021341242015	RAGHU DIPAK CHHAGAN	0.54	9.28	87.5	2249
14	PRN:T2021341242016	FAIZ KHAN FEROZ KHAN	0.12	9.40	84.5	PASS
15	PRN:T2021341242017	KHAN FARHAN NASIR	0.13	0.50	91.6	DASS
16	PRN:T2021341242018	AAGALE GAURAV SUBHASH	8 03	8.00	01.0	DACC
17	PRN:T2021341242019	SONAWANE GAURAV RAVINDRA	0.03	9.25	07.3	DATE
18	PRN:T2021341242022	GHUMRE HARSHADA DNYANESHWAR	8.63	9.11	80.1	DALL
19	PRN:T2021341242023	GANGADHAR HRITIK SANJAY	8.54	9.05	00.0	DALC
20	PRN:T2021341242024	JAGDALE JAGANNATH KASHINATH	8.40	8.77	64.7	PASS
21	PRN:T2021341242025	GAIKWAD KALLYANI SANJAY	8.38	9	65	PASS
2.2	PRN:T2021341242026	KHAN ATIF KHAN SAMI	8,83	.9	85	PASS
23	PRN:T2021341242027	JADHAV KUNAL KAILASH	7.88	8.16	76.6	PA33
.24	PRN:T2021341242028	SAYYAD MOBIN AYYUB	8.21	8.61	81.1	PASS
25	PRN:T2021341242029	MOHAMMED KHIZER MOHAMMED FEROZ	8.71	9.03	85.3	PASS
26	PRN:T2021341242030	FAROOQUI MOHAMMED QURRAM MOHAMMED IFTEQ	8.63	9.15	86.5	PASS
27	PRN:T2021341242031	CHISHTY MOHD AFRAZUDDIN MOHD ANWARUDDIN	8.29	8.8	83	PASS
28	PRN:T2021341242033	VHARE OM SANTRAM	8.25	8.92	84.2	PASS
29	PRN 12021341242034	SADAWARTE PALLAVI SANJAY	7.71	8,44	79.4	PASS
30	PRN:72021341242035	MUGDAL PRADNYA BHIMRAO	7.71	8.41	79.1	PASS
31	PRN:T2021341242035	GOSAVI PRAFULL VILASPURI	9	9.25	87.5	PASS
32	PRN:T2021341242037	PANDAGALE PRASENJEET TRYAMBAK	8.13	8.87	83.7	PASS
33	PRN:T2021341242038	TUPARE PRATIKSHA RAMESH	8.25	B.33	78.3	PASS
34	PRN:T2021341242039	WAGHMARE PRIYANSHU VIJAY	8.46	8.51	80.1	PASS
35	PRN:T2021341242040	QUADRI SYED UZAIF SYED SALEEM	7.92	8.67	81.7	PASS
36	PRN:T2021341242042	CHAVAN ROHIT RAJESH	8.58	8,52	80.2	PASS
37	PRN:T2021341242043	TUPE RUSHIKESH PARASRAM	8.42	8,54	80.4	PASS
38	PRN T2021341242044	BINAFIF SAAD RUBAIYA	8.46	8.74	82.4	PASS
39	PRN T2021341242045	SALVE SAKSHI RAMAKANT	8.54	8.89	83.9	PASS
40	PRN:T2021341242046	PATIL SANKET SURESH	8.33	8.51	80.1	PA55
41	PRN:T2021341242047	PATANKAR SAPNA BHAGAWANRAO	8.42	8.69	B1.9	PASS
43	PRN:T2021341242049	SHAIKH MOHAMAD ARSHIYAN MOHAMAD ANSARI	8.79	8.66	81,6	PA55
44	PBN:T2021341242050	SHAIKH ZIA AHMED JALIL AHMED	7.71	8.1	76	PASS
45	PRN T2021341242052	RAJGURU SIDDHANT ASHOK	8.17			Fail
46	PRN:T2021341242053	SAKHARE SUDARSHAN RAGHU	7.92	8.28	77.8	PASS
40	PRN:T2021341242054	SHINDE SURAJ KASHINATH	8.42	8.72	82.2	PASS
40	PRN:T2021341242055	SADAWARTE SURBHI JITENDRA	7.96	8.59	80.9	PASS
43	PRN-T2021341242057	PATHARE TANMAY BABASAHEB	8.38	8.57	80.7	PASS
61	PRN-T2021341242058	JAYBHAYE TEJAS ARUN	8.96	9.03	85.3	PASS
24	PRN-T2021341242059	KANKAL TEIAS RAJENDRA	8.88	8.92	84.2	PASS
24	DR4LT2021341242060	ANSARI UZAIR AHMAD ANSARI ABDUL	8.38	8.84	83.4	PASS
53	000 12021341242000	JAGTAP VAIBHAV KAILAS	9.04	9.07	85.7	PASS
54	PRN:12021341242001	BODKHE VIKAS SHIVAJI	8.21	8.74	82.4	PASS
55	PRN 12021341242002	KADU VISHAL MANOHARAO	8.04	8.85	83.5	PASS
20	PRINT 20223912942000	WAGH YASH DEEPAK	8.38	8.8	83	PASS
57	PRN 12021541242004	KHILLARE YASH EKNATH	8.25	8:9	84	ASS
58	PRN:12021341242003	ALITI YASH ANANTRAO	8.71	8.92	84.2	ASS
	and the second se		and the second second	And in case of the local diversion of the loc	and the second s	

61	PRN:T2021341242068	BAMNAWAT VOCITA BANADUAN	1 8	75 8.7	5 82	5 PAS
62	RN:T2021341242059	SHAIRU ZAID GUANNA RAMDHAN	0.1	87	7 82.	7 PAS
63 6	PRN:T2021341242009	SHAIKH ZAID SHAIKH SAYEED	8.5	8	2 7	8 PAS
64	PRN-T2021241202070	SHAHAPURKAR AADESH ANIL	1.5	0 0.3	88	4 PAS
65	RN.12021341293007	CHATSE NIKITA BABURAO	9.0	c 0.3	78	PAS
63	PRIN:12021341372002	LANDGE NAGSEN SUNIL	7.9	0 0.2	944	PAS
6/	PRN:T2121341242502	WAGHMARE KANCHAN DHONDIBA	8.9	6 8.90	70 0	PASS
68	PRN:T2121341242503	NITURE VISHAL MALLIKARJUN	8.4	6 8.45	07.1	DASS
71	PRN:T2121341242506	KHARAT DHAMMADEEP KAILAS	-9.2	1 9.21	0/ 4	DACE
72	PRN:T2121341242507	SAYYED SAMEER SAYYED SHAKER	8.7	1 8.71	82.1	DASS
73	PRN:T2121341242508	WANKHADE KUNAL SAHEBRAO	8.54	8.54	80.4	PASS
75	PRN:T2121341242510	GAIKWAD RUTUJA DAYANAND	8.25	8.29	11.9	PASS
76	PRN:T2121341242511	QUAZI ALINA AYESHA QUAZI HYDER MOHIUDDIN	8.79	8.79	82.9	PASS
77	PRN:T2121341242512	TANDALE SUPRIYA SANTOSH	8.63	8.63	81.3	PASS
79	PRN:T2121341242514	KHURDE SHRUTIKA VILAS	8.21	8.21	77.1	PASS
80	PRN:T2121341242515	SATHE JAY KAILAS	8.17	8.17	76.7	PASS
81	PRN-T2121341242516	PATIL POOIA SUKALAL	8.08	8.08	75.8	PASS
82	PRN-T2121341242517	PATIL SHOURESH SHIVAJI	8.21	8.21	77.1	PASS
83	PRN-T2121341242518	INAMDAR ALTAMASH AFJAL	9.08	9.08	85.8	PASS
84	PRN-T2121341242519	CHAUDANTE VAISHNAVI BHIMRAO	8.83	8.83	83.3	PASS
85	PRN-T2121341242520	KAMBLE TEJASWI ARVIND	8.46	8.46	79.6	PASS
86	PRN:T2121341242521	SURUSHE CHAITALI MINESH	8.54	8.54	80.4	PASS
87	PRN:T2121341242522	TATHE SAKSHI RAVINDRA	8.38	8.38	78.8 P	PASS
88	PRN:T2121341242523	TATHE SEJAL RAVINDRA	8.38	8.38	78.8 P	ASS
89	PRN:T2121341242524	SARDAR AJINKYA MANOHAR	8.71	8.71	82.1 P	ASS
90	PRN:T2121341242525	PATIL ABHISHEK JAIDEEP	8.75	8.75	82.5 P	ASS
91	PRN:T2121341242526	INGALE KANCHAN SURYAKANT	8.5	8.5	80 P	ASS
92	PRN:T2121341242527	HARNE RUSHIKESH VITTHALRAO	8.63	8.63	81.3 P	ASS
. 93	PRN:T2121341242528	KHAIRE RUPALI BHAUSAHEB	8.38	8.38	78.8 P/	ASS
94	PRN:T2121341242529	PAWAR BHAKTI PANDIT	8.79	8.79	82.9 P/	ASS
95	PRN:T2121341242530	GANRAJ POOJA ANNASAHEB	8.71	8.71	82.1 PA	LSS
96	PRN:T2121341242531	VAUWADE VAISHNAVI NARAYAN	8.29	8.29	77.9 PA	155
97	PRN:T2121341242532	KARALE RAJASAB MADHAV	8.38	8.38	78.8 PA	SS
98	PRN:T2121341242533	SHIRGIRE SHRINIVAS SHIVAJIRAO	8.54	8.54	80.4 PA	SS
99	PRN:T2121341242534	DHIWAR PRATIKSHA MARKAS	8.46	8.46	79.6 PA	SS
101	PRN:12121341242536	MATE ROHIT MILIND	8.17	8.17	76.7 PA	SS
102	PRN:12121341242537	SIDDIOLII MONTACHINA A77AA A77AA	8.83	8.83	83.3 PA	SS
103	PRN-T2121341242538	KARDILE OMKAR ANU	8.54	8.54	80.4 PA	SS
105	PRN-T2121341242535	MOHAMMED SAAD MOHAMMED WALKED	8.38	8.38	78.8 PAS	55
106	PRN:T2121341242542	RAJPUT KIRAN GULARSINGH			Fail	
108	PRN:T2121341242544	SHEJUL GAURI ASHOK	8.54	8.54	80.4 PAS	is
110	RN:T2121341242541	RAGDE RAHUL PRABHAKAR	8.5	8.5	80 PAS	S
					Fail	

Subjectwise Result Analysis:

Subject MATH-III	pass 100	pass%	fail	fail%	Pass Class	Pass Class*	Second	Second	First	First		
DMS	103	99.09%	1	0.09%			C.1855	Class%	Class	Class%	Distinction	Distinction %
DS	109	99.09%	1	0.004		3.63%	4	3.63%	41	37.27%	60	51.545
CLO	109	99.09%		0.09%	0	0%	2	1.81%	1	0.09%	106	96 16 1
CAO	109	99.094	-	0.09%	3	2.70%	2	1.81%	48	43.63%	56	FD 000
00PJ	107	07 384	-	0.09%	0	0%	0	0%	3	2.70%	106	39.30%
DS&OOPJ	100	31.61%	3	2.70%	0	0%	1	0.09%	3	2.70%	100	26.36%
SEMINAR	109	99.09%	1	0.09%	0	0%	0	0%	14	30.004	103	93.63%
INTERNA	109	99.09%	1	0.09%	0	0%		044		30.90%	75	68.18%
TERNSHIP	110	100%	0	0%	-	0.00	0	0.26	76	69.09%	33	30.00%
			-		9	0%	11	10%	35	31.81%	64	58,18%

Total Result:

Appeared	110	100%
Pass	105	95.45%
Total Fail	5	4.54%
Pass Class	0	0%
Second Class	0	0%
First Class	10	9.09%
Distinction	95	86.36%

٠

Class Teacher Prof. B.S.Pawar

Sprices

ALO.D Prof. V. B. Kamble

P.E.S College Of Engineering, Aurangabad Department Of Computer Science & Engineering BTECH FINAL YEAR CSE AY-2020-21

~

100

SEM VII Result Analysis

SR, NO.	PRN	NAME	SGPA	CGPA	RESULT
1	PRN-1921341242011	GANDHI SHARON SUNIL	9.30	8.38	PASS
2	PRN:1921341242012	GODESWAR APURVA ANIL	8.65	8.26	PASS
3	PRN:1921341242015	KHAN MOHAMMED SOHAIL	9.30	8.31	PASS
4	PRN:1921341242016	SHAIKH FURKHAN SHAIKH FAROOQ AHMED	9.15	8.02	PASS
5	PRN:1921341242022	PAGARE SACHIN LAXMAN	9.75	8.61	PASS
6	PRN 1921341242023	AUCHARMAL PRASANNA BHALCHANDRA	9,10	8.34	PASS
7	PRN 1921341242024	CHOUDHARY 18 SARQUNNISA 8.SDULHAQUE	9.35	8.93	PASS
8	PRN:1921341242025	KHAN ARBAZ RAFIQUE	9.40	8.70	PASS
9	PRN:1921341242026	N8 SEELA TANZEEL GULAM MD NAZEERUDDIN	9.40	8.90	PASS
10	PRN-1921341242027	PAKHALE SHRAWASTI PREMNATH	9.20	8.23	PASS
11	PRN:1921341242028	DARWANTE SHUBHAM RAMCHANDRA	9.25	8.21	PASS
12	PRN:1921341242029	SALVE PRAMOD GAUTAM	0.35	0.33	
13	PRN 1921341242030	WASEEM AHMED 8 5DUL BAHIM	9,23	8.33	PASS
14	PRN:1921341242031	SHAIKH AISHA BANO MOHAMMED ASIF	9.40	8.37	PASS
15	PRN:1921341242032	AVHALE SHALINI RAMESH			
16	PRN:1921341242033	KHANDEKAR MAYURI MANGESH	7.90	7.95	PASS
17	PRN:1921341242034	ZAMBARE CHETANA PUSUPADA	9.50	8.60	PASS
38	PRN:1921341242035	PAWAR ANUSHKA NAVNATU	8.60	7.88	PAS
19	PRN:1921341242036	SHINDE SHIVANI ANU	9.30	8.55	PASS
20	PRN:1921341242032	TELLIPE ADCUANT ANIL	8.80	8.24	PASS
21	PRN:1921341242038	NIDA AEROZ IRRAHINA EARASU	8.65	8.04	PASS
		PROFESSION REAL IDIOARDINI PARASH	9.10	8.18	PASS

		-	
		~	
	æ	-	

-22	PRN: 1921341242039	KHAN FAISAL KHAN KHAN LIVAOAT KHAN	9.25	8.09	PASS
23	PRN:1921341242041	BODEUS DOLLARS	5.4.5	0.05	1435
24	Bett Les	BODKHE ROHAN VILAS	8.95	8.17	PASS
18.8	PRN:1921341242042	SHAIKH SABA MOHAMMED SAFIULLAH	9.20	8.58	PASS
25	PRN:1921341242043	DAMALE ADTI CURRENT			
26	PRN: 1921341242044	NIKANA VADOUS DOMESH	9.30	8.16	PASS
27	PRN:1921341242045	NIKAWI VARSHA PRAKASH	7.70	7.42	PASS
20		JADHAV DNYANESHWAR SAHEBRAD	9.10	8.01	PASS
28	PRN:1921341242046	FAROOQUI MOHAMMED YOUSUF ASHFAQ	9.00	8.25	PASS
29	PRN:1921341242049	JADHAV DHIRAJ BALKRUSHNA	9.30	8.11	PASS
30	PRN: 1921341242052	DHOTRE VAISHANVI DILIP			EAU
31	PRN 1921341242053	WAKUDE RAHUL ARJUN	9.25	8 37	DASE
32	PRN:1921341242054	KHANDALE POOJA BB 5AN	9.40	8.37	PASS
- 33	PRN:1921341242055	SHAIKH S8 SIR SHAIKH TAHER	9.40	3.70	PASS
34	PRN:1921341242056	RATHOD MANISHA BHIMDEO	0.35	7,79	PASS
35	PRN:1921341242057	SHAIKH AHSAN & SDUL SALEEM	0.65	1.75	PASS
36	PRN:1921341242058	JADHAV PRIYANKA PANDURANG	9.03	8.34	PASS
37	PRN:1921341242059	CHAUS RAIYAN AWAD	9.10	8.54	PASS
38	PRN:1921341242093	KANOJE YOGESHWARI DINESH	9.05	8.40	PASS
-39	PRN:1921341242094	MALI PRIYANKA TUKARAM	9.65	8.48	PASS
40	PRN:1921341242095	BANSODE RUPALI BAIENDRA	9.25	8.78	PASS
41	PRN 1921341242096	KAMBLE AMOL SUNI	8.60	8.12	PASS
42	PRN 1921341242097	BANGAR KRUSHNA PRATHAD	9.00	8.32	PASS
43	PRN:1921341242099	GAVHANE PRATIKSHA PRAVACH	9.10	8.33	PASS
44	PRN:1921341242100	SHAIKH GOU SHAIKH AKRAD	9.30	8.19	PASS
45	PRN:1921341242101	BAGHDANE VARHAVARIAS	9.05		FAIL
46	PRN:1921341242102	PAWAR PRATIVENA THEOREM	9.25	8.10	PASS
47	PRN:1921341242103	DANDEKAD BUTTUA MACANT	9.40	8.53	PASS
48	PRN:1921341242104	BATHOD BOOMAAA MUASANT	9.30	8.39	PASS
49	PRN:1921341242105	AMAGE ANIALI ANNARAG	9.05	8.49	PASS
50	PRN:1921341242106	PADME 9811 NAMOCO	8.70	8.30	PASS
51	PRN:1921341242107	NIRANIAN TOUSA	9,45	8.66	PASS
52	PRN-1321341242108	THORAT MICHIE DUALISAUS D	9.40	8.70	PASS
	and the second se	THE REAL PROPERTY OF THE PROPE	9.45	8.74	PASS

53	PBN 1921341343100	State			
	111111111111111111111111111111111111111	SYED AHMEDULLAH JASER ASADULLAH	9.25	8.42	PASS
54	PRN:1921341242110	PAWAR ALAY RAURAG			1000
55	PRN:1921341242111	ICSHI PRATUAREN CANADA	8.95	8.10	PASS
56	PRN:1921341242112	BHOSTE CIDICUL SINTAN	9.35	8.36	PASS
57	PRN:1921341242113	BORADE ANISTA CHARTH	9.40	8.74	PASS
58	PRN 1921341242114	BARHATE MININA SHAMRAO	9.45	8.82	PASS
59	PRN:1921341242115	BARHATE MIRUNALI PRAKASHRAD	9.20	8.21	PASS
60	PRN 1921341242116	NALE VISHAL DEVIDAS	9.35	8.36	PASS
		SHAIKH JUNED ASLAM			FAIL
61	PRN: 1921341242119	QUADRI SYED REHAN ALI SYED IMRAN	8.95	8.27	PASS
62	PRN:1921341242123	SAHIL KUMAR	9.65	8.43	PASS
63	PRN:2021341242001	PINJARI ASHPAK AHAKK	9.40	7.49	PASS
64	PRN:2021341242002	SHAIKH SHAHID SHAIKH AHMAD	9.00	7.31	PASS
65	PRN:2021341242003	HASHMI SYED WAQUAS SYED WASIF	9.65	8.22	PASS
66	PRN:2021341242004	SIRSAT UPENDRA UTTAM	9.45	7.58	PASS
67	PRN 2021341242005	TANDALE PRASAD PANDURANG	8.75	7.53	PASS
68	PRN:20213420171124210013	WANKHEDE AKSHAY SURESH	9.25	7.71	PASS
69	PRN:20213420171124210016	GANGAWANE ANIKET NANA	8,60	7.99	PASS
70	PRN:20213420171124210022	SHAIKH SHAHID J8 SER	9.20	8.79	PASS
71	PRN:20213420171124210049	KUNDE AYUSH DILIP	9.45	8.13	PASS
72	PRN:20213420181124210003	JOGDAND APARAJITA SHANKAR	9.30	8.43	DASS
73	PRN:20213420181124210006	PAYAL BHANDAS DHANAIT	9.40	8.40	PASS
74	PRN:20213420181124230007	SARVADE SANKET SANJAY	9.40	7.87	PASS
75	PRN:20213420181124210008	9MER MOIZ SHAIKH MASUD	9.45	8.41	PASS
76	PRN-20213420181124210009	GIRHE PRAJWAL ANNASAHEB	9 30	7.97	PASS
77	PRN:20213420181124210011	SAYYED MUSTAKIM JILANI	9.45	8.64	PASS
78	PRN:20213420181124210012	GANDLE ARYAN SAMEER	8.90	8.11	PASS
79	PRN:20213420181124210013	MHASKE VISHWAIA SANJAY	9.20	8.03	PASS
80	PRN:20213420181124210014	SURYAWANSHI PAYAL PRAVIN	9,30	8.38	PASS
81	PRN:20213420181124210015	KHOJE POOJA ARJUN	8,30	8.76	PASS
82	PRN:20213420181124210016	KALE BUTUIA MADHUKAR	9.30	8.49	PASS
83	PRN:20213420181124210018	AMBULGEKAR SHRUSHTI MANE H	10.00	9.35	PASS
84	P8N:20213420181124210019	MENE VASHNAVI SANTOSH	9.75	8.57	PASS

e.

ŗ

.....

Fil

85	PRN:20213420181124210030	K d the s			
86	PRN:20213420181124210020	JADHAV NILESH RAVINDRA	8.95	7.89	DATE
	0101124210022	SYED SAQUIB MOHAMMED	9.20	201	PASS
87	PRN:20213420181124210023	OURESHI MALIER FATHA		0.01	PASS
88	PRN-2021242018112112	A SEER AHMER FAILMA NASEER AHMED	9.50	9.05	PASS
89	PRN-20213420181124210025	GAIKWAD YASH ARVIND	9.75	9.03	DACE
90	PRM-20213420181124210026	BANDAWAR SANKET SUNIL	9.65	8.20	PASS
01	PRIV:20213420181124210027	MARMAT TEJAS SHANKARSING	8.90	7.07	PASS
- 51	PRN:20213420181124210030	NIRMAL SHREYAS VIVEK	0.00	7.72	PASS
92	PRN:20213420181124210034	RASAL SOMESH SHRIRAM	9.00	7.90	PASS
93	PRN:20213420181124230035	JADHAV VISHAL RAMDAS	9.19	8.11	PASS
94	PRN 20213420181124210036	SATDIVE MANSI PAVPHAN	8.60	7.88	PASS
nr	DOI: 1000-0-0-0	STORE INTERACTORIAN	9.85	8.38	P455
32	PHN:20213420181124210038	RAZVI SYEDA ZEBA SYED VASI HUSSAIN	9.45	8.68	PASS
96	PRN:20213420181124210040	SHODELE MIGHLIDILID			1111048
97	PRN:20213420181124210041	SHARE ANT CANAGE AND AND AND AND	9.40	8.81	PASS
-98	PRN 20213420181124310043	DHUMAN PARTNANCE MORAMMED	9.25	8.04	PASS
638		DHUMAL BAKSHANDA VIJAY	9.15	# 52	P.455
-99	PRN 20213420181124210077	ANSARI MOHD N8 SEEL MOHD SAMEE	8.95	8.01	2215
-100	0010 000524000012243100023		11000		7/633
+ 47 P	FURITOR 12420303154530065	SAMTAK VIKAS NINISARKAR	9.70	8.10	PASS
102	PRN-20213420181124711001	SHAIKH ADIRA KASHISH SHAICH TAHER	444		Parce -
			9.53	3.9.7	8455
202	PRN-20233420181124211002	MAGAR ASHWINI GORAKH	9.65	8.90	2455
103	PRN 20215420181124211003	SHAREF MURASSHAR MUNITA?	9.60	5.44	PASS
104	PRN 20213420181124211004	MAHAJAN ANAND SHESHERAC	9.15	8.12	PAN
105	PRN 20213420181126211005	MALL PRAJAFTA DASHRATH	1		140
106	PRN 20213420381124213006	SYED ARMED AMON ARMED ADNAS	11.45	14144	

Total Result :

Appeared	106	100%
Pass	103	03.100
Fail	4	47,16%
Distinction	00	3.77%
First Class	39	93.39%
Second Class	3	2.91%
1445	0	0.00%

Subjectwise Result Analysis :

Subject	Pass	Pass %	fail	Fail %	Pass	Pass	Second	Second	First	First	Distincti	Distinction
SE	103	97%	1		Class	Class%	Class	Class%	Class	Class %		e-totaletion
DIP	106	1000		2.8.5%	0	0.0%	2	1.9%	1	3.9305	00	.7*
66	100	100%	0	0.0%	0	0.0%	0	0.052		4.0.270	98	92.45%
	106	100%	0	0.0%	0	0.0%	0	0.076		0.9%	105	99.05%
DT	106	100%	0	0.0%	0	0.000	0	0.0%	4	3.8%	102	96.22%
PROJECT				0.076		0.0%	1	0.9%	1.2	1.92%	103	971685
PART I	106	100%	0	0.0%	0	0.0%	T.	0.9%	1	0.40.	105	00.000
PART I	106	100%	0	0.0%	0	0.0%	T.	0.9%	1	0.4%	103	91

•

Chiss Teacher

Prof. Gauhar Zareen

HOD Dr.V.B.Kamble

the state of the last

PES COLLEGE OF ENGINEERING, A'BAD BTECH CSE 2021-22

8TH SEMESTER BATU RESULT

SR. NO.	NAME	CGPA	Percentage
1	GANDHI SHARON	8.42	84.20
2	GODESWAR APURVA	8.30	83.00
3	MOHAMMED SOHAIL	8.46	84,60
4	SHAIKH FURKHAN	8.21	82.10
5	PAGARE SACHIN	8.71	87.10
6	AUCHARMAL PRASANNA	8.29	82.90
7 .	CHOUDHARY TABARQUNNISA	8.85	88.50
8	KHAN ARBAZ	8.79	87.90
9	NABEELA TANZEEL	8.98	89.80
10	PAKHALE SHRAWASTI	8.20	82.00
11	DARWANTE SHUBHAM	8.22	82.20
12	SALVE PRAMOD	8.30	83.00
13	WASEEM AHMED	8.39	83.90
14	SHAIKH AISHA	8.97	89.70
15	AVHALE SHALINI	7.96	79.60
16	KHANDEKAR MAYURI	8.54	85.40
17	ZAMBARE CHETANA	8.01	80.10
18	PAWAR ANUSHKA	8.52	85.20
19	SHINDE SHIVANI		
20	TELURE ARCHANA	8.05	80.50
21	NIDA AFROZ	8.09	80.90
22	KHAN FAISAL	8.13	81.30
. 23	BODKHE ROHAN	8.14	81.40
24	SHAIKH SARA	8.51	85.10
25	DAMALE ARTI	8.17	81.70
26	NIKAM VARSHA	7.44	74.40
27	JADHAV DNYANESHWAR	8.14	81.40
28	FAROOQUI MOHAMMED YOUSUF	8.21	82.10
29	JADHAV DHIRAJ	8.14	81.40
30	DHOTRE VAISHANVI		
31	WAKUDE RAHUL	8.32	83.20
32 1	KHANDALE POOJA	8.38	83.80
33 8	SHAIKH SABIR	7.9	79.00
24 1	ATHOD MANISHA	7.84	78.40
25 0	HAIKH AHSAN	8.38	83.80
26 1	A DUAN DRIVANKA	8.46	94.60
30 17	ADHAY FRI LANDA	13.40	04.00

38	KANOJE YOGESHWARI		
39	MALIPRIYANKA	8,44	84.40
40	BANSODE RUPALI	8.69	86.90
41	KAMBLE AMOL	8,09	80.90
42	BANGAR KRUSHNA	8,45	84.50
43	GAVHANE PRATIKSUA	8.28	82.80
44	SHAIKH AADU	8.16	81.60
45	BAGHDANE VAIDUAN		
46	PAWAR PRATIKSHA	8.09	80.90
47	DANDER AD DUTUG	8.43	84.30
48	RATHOD BOONING	8.36	83.60
40	AMAGE ANIALI	8.39	83.90
50	PADAE AADT	8:33	83.30
50	NUD AND AN TOPPIN	8.59	85.90
51	NIKANJAN TORVI	8.84	88 40
52	THORAT NIKHIL	8.73	87.30
53	SYED AHMEDULLAH JASER	8.57	85.70
54	PAWAR AJAY	8.07	80.70
55	JOSHI PRATHMESH	8.34	83.40
56	BHOSLE GIRISH	8.63	86.30
57	BORADE ANKITA	8,88	88.80
58	BARHATE MRUNALI	8.18	81.80
59	KALE VISHAL	8.3	83.00
60	SHAIKH JUNED		
61	QUADRI SYED REHAN	8.4	84.00
62	SAHIL KUMAR	8.46	84.60
63	PINJARI ASHPAK	7.56	75.60
64	SHAIKH SHAHID	7.45	74.50
• 65	HASHMI SYED WAQUAS	8.42	84.20
66	SIRSAT UPENDRA	7.6	76.00
67	TANDALE PRASAD	7.56	75.60
68	WANKHEDE AKSHAY	7,73	77.30
69	GANGAWANE ANIKET	7.98	79.80
70	SHAIKH SHAHID JABER	8.30	83.00
71	KUNDE AYUSH DILIP	8.25	82.50
72	JOGDAND APARAJITA	8.50	85.00
73	PAYAL BHANDAS	8.35	83:50
74	SARVADE SANKET	8.02	80.20
75	AAMER MOIZ	8.43	84.30
76	GIRHE PRAJWAL	8.04	80.40
77	SAYYED MUSTAKIM	8.70	87.00
78	GANDLE ARYAN	8,12	81.20
79	MHASKE VISHWAJA	7,98	.79.80

.

50	SURYAWANSHI PAYAL		
81	KHOJE POOJA	8.47	
\$2	KALE RUTUJA	8 70	84.70
83	AMBULGEK AR SUDVICE	8.42	87.00
84	MENE VAISHNAM	0.43	84.30
85	JADHAV NIL ESU S	9.10	93.50
86	SVED SAOUUS	8.39	85.90
07	OURESHID	8.05	80.50
07	CAWAWA MAHEK	8.14	81.40
00	GAIKWAD YASH	8.93	89.30
89	BANDAWAR SANKET	9.0	90.00
90	MARMAT TEJAS		
91	NIRMAL SHREYAS	8.02	80.20
92	RASAL SOMESH	8.06	80.60
93	JADHAV VISHAL	8.12	81.20
94	SATDIVE MANSI		WATED
95	RAZVI SYEDA ZERA	8.49	84.90
96	GHODELE NIDHI	8.64	86.40
97	SHAIKH ANEES AUMED	8.86	88.60
98	DHUMAL RAKSHANDA	7.99	79.90
99	ANSARI MOHD NABERI	8.48	84.80
100	SAMYAK VIKAS	7.96	79.60
101	SHAIKH ADIBA	8.24	82.40
102	MAGAR ASHWINI	8.75	87.50
103	SHAIKH MUBBASSHAP	8.95	89.50
104	MAHAIAN ANAND	8.55	85.50
105	MALIPRAJAKTA	8.43	84.30
106	SYED AHMED AMAAN	8.02	00.00
	or the cumulate cumulant	0.02	80.20

Total appeared-106	Passing percentage- 93.39%
Total passed-99	
Total failed-7	

Destinction-97	Destinction percentage-91 50%
First class-2	First class percentage-1 88%
Second class-0	Second class percentage-0.0%
Fail-7	Fail percentage-6 60%

CLASS TEACHER PROF. GAUHAR ZAREEN

HOD

P.E.S College Of Engineering, Aurangabad Department Of Computer Science & Engineering TYCSE AY-2021-22 SEM V Result Analysis

Sr.No	PRN	Name	SCDA	CCDA		Decius
1	1921341242001	MOHAMMED FAIZ MOHAMMED SHAKEEI	JUPA	COPA	70	RESULI
2	1921341242002	SHAIKH JUNED SHAIKH III ANI	9.55	8.27	82.7	PASS
3	1921341242004	KOKATE SHANTANU SANIAY	9.57	8.18	81.8	PASS
4	1921341242005	SURVA AADITI ASHOKRAD	9.48	8	80	PASS
5	1921341242006	OHAOVE RADHESHAN JANABOHAN	9.43	8.55	85.3	PA33
6	1921341242007	SOLAT NEHA MORAN	9.1	8.42	84.2	PASS:
7	1921341242008	KHANDARE ROHIT NAHAYAN	3.45	8.4	35	-FA33
8	1921341242009	SHAIKH ABDUL GAEODE ABDUL HADI	3 366	1.84	53.4	PA53
9	1921341242010	AKASH WADGAONKAR	9.690	0.3	2.5	#'A33
10	1921341242013	GANORKAR ADARSH JAVKUMAR	7.56	3.30	00.1	PA33
11	1921341242014	GAIKWAD SANDHYA DE IP	9.04	9.43	04 L	F430
12	1921341242018	SHINDE RAM HARIDAS	9.93	0.05	32.5	P:400
13	1921341242019	SINGH ABRAY PRABHUNATH	4.14	8.14	40.0	2315
14	1921341242020	UMAR ABOUL AZIZ ABOUL WAHEED	3.62	8.71	47.1	\$366
15	1921341242021	SHAIKH ZAFAR AFSAR	9.41	4.36	42 =	.PALL
16	1921341242040	TAHA AQDAS SHAIKH	0.41	3 24	22.5	2375
17	1921341242047	MORE ROSHAN RAJENDRA	1.74	8.83		3100
18	1921341242051	PARKHE SANJANA AJAY	8.5.7	8.64	22.4	2926
19	1921341242060	SATPUTE GUNJAN RAJENDRA	1.41	3.71	111	2111
20	1921341242061	SYED ADNAN ALLAHMED AD	9.26	26.8	11 -	2225
21	1921341242062	PAIERAO NIKITA ANAND	- A A	2.95	1.1	0.855
22	1921341242063	KASHIDE GAURAV SANIAY	447	8.00	41.4	10455
23	1921341242064	ASNA MARVISH SALED KHAN	2.41	8.911	41-1	PASS
24	1921341242665	PADE FORT MADRUKAR	9.40	0.01		245
25	1921341242066	HADEEKAR UTKARSH AMIL	·	2.52	25.2	14/15

10

A DEAL AND A DEAL AND AND A DEAL AND A DEAL

26	1921341242067	GAGAN ADMAN				
27.0	1921341242068	CHOAN ADNAN AJAZ	9.14	7.67	76.7	PASS
28	1921341242060	CHAN ARESAN DANISH AUSAF KHAN	9.14	8	80	PASS
29	1921341242009	KHAN AMENA IMROZ MHOD AKHTAR	9.298	8.32	83.2	PASS
30	1971741242070	BODHANE PRATIK KRISHNA	9.24	8.37	83.7	PASS
21	1921341242071	MOHAMMAD ASHHERUDDIN MOHAMMAD AKHTERUDDIN	9.57	8.75	87.5	PASS
31	1921341242072	RATHOD SHRUTI MUKESHKUMAR	9.57	8.96	89.6	PASS
-32	1921341242073	RATHOD PRATIK DHARMRAJ	9.62	8.91	89.1	PASS
33	1921341242074	THAKUR PRAVIN RAMKISHAN	9.57	9	90	PASS
34	1921341242075	RATHOD AKSHAD ANIL	9.43	8.62	86.2	PASS
35	1921341242076	SHAIKH AHMED FAZAL RAFIK	9.62	8.52	85.2	PASS
36	1921341242077	BORKAR RITIKA GANGADHAR	9.43	8.54	85.4	PASS
37	1921341242078	EHAN AMAANULLAH SHAHID AHMED	9.48	8,06	80.6	PASS
38	1921341242079	SHAIKH SALEHA AFROZ YUSUF	9.48	8.32	83.2	PASS
30	1921341242080	GADEKAR SWAPNIL VILAS	9.43	8,5	85	PASS
40	1921341242081	RATHOD AMOL PREKASH	9.19	7.81	78.1	PASS
40	1921341242082	PATEL OM HEMANT	9.62	8.78	87.8	PASS
41	1921341242083	SYED ZAINUDDIN GOUSUDDIN KIRMANI	9.38	8.23	82.3	PASS
42	1921341242084	KHAN ARIF MOHAMMAD MOHAMMAD MUSLIM	9.62	8.5	85	PASS
43	1921341242085	MYAKAL SHREYASH KRISHNA	9.43	8:39	83.9	PASS
44	1921341242087	JADHAV HRISHIKESH 8ALKRUSHNA	9.52	8.25	82.5	PASS
45	1021341242088	MOHD MUZAMMILUDDIN MOHD FAYAZUDDIN	NA	NA	NA	Fail
40	1921341242089	GHANGHAV MAYUR SURESH	9.57	8.39	83.9	PASS
4/	1921341242091	SALVE ANIL NATHU	9.24	NA	NA	PASS
48	1921341242092	PATANGE KESHAV VIVEKANAND	8.76	7.24	24.4	PASS
49	1921341242117	BADWANE SAURBH SANDULAL	9.14	8.12	31.6	PASS
50	1921341242118	SHAIKH NEHAL AHMED MUKHTAR	9.29	8.15	51.5	PASS
51	1921341242120	GANVIR SEJAL CHANDRAKANT	9.29	NA 7.2	7.9	PASS
52	1921341242121	MOHAMMAD UBAID UR RAHEMAAN MOHAMMAD JAWEED	9.14	1,5	84.6	PASS
53	1921341242122	SHIRALE ONKARESHWAR AMBADAS	0.29	NA NA	NA	Fail
54	1921341242124	ABHANG PRATIK BARKU	0.48	8.06	80.6	PASS
55	1921341612019	PATHAN DANISH KHAN HYDER KHAN	0.14	9.03	90.3	PASS
50	2021341242006	ABOUL KASHIF SHAIKH RAUF	19.29	8.94	89.4	PASS
57	2021341242007	SHAIKH SAMEER SHAIKH MUSHTAK				

L'il correpondent

39	2021341242008			1			
60	2021341242000	KHILLARE TUKARAM SAMPLIA					
61	2021341342009	GAIKWAD BHAGYSHRI ANANA		0.20	1	-	
62	2021341242010	SHIRASE OMKAR SANIAN		9.38	9.11	91.1	PASS
63	2021341242011	JOSHI PRASAD MILLING		9.52	9.11	91.1	PASS
64	2021341242012	LODHA SIDDHARZU SH		9.48	9.39	93.9	PASS
65	2021341242013	SHAICH BIZIMAN CHINAN		9.43	9.18	91.8	PASS
05	2021341242014	GOSAVI PRATIK SK KHALIL		9.48	9.06	90.6	PASS
00	2021341242015	SHARD FAR AN		9.43	9,33	93.3	PASS
67	2021341242017	CHORE HAIZ AHMED SAMEER		9.05	9.39	93.9	PASS
68	2021341242018	CHORADE GIRISH HARISHCHANDRA		0.63	8.02	80.2	PASS
69	2021341242010	CODGE PRAKASH RAJESH		9.52	9.24	92.4	PASS
70	2021341242019	PLANDHE SANKET VILAS		3.02	9.5	95	PASS
71	2021341242020	LAMSDGE SUDIP VINOD		0.1	PIA 0.54	NA	Fail
72	2021341242021	KHANDEKAR ANIXET GUNVANT		0.28	8.56	85.6	PASS
72	2021341242022	DESHPANDE PRAJWAL PRAMOD	_	9,36	9.55	93.3	PASS
73	2021341242022	KHARAT RAJ RAVI		9.45	9.36	93.5	PASS
74	2021341242024	SHAIKH MD AZEEM SHAIKH NAZIMUDDIN		9.19	8-83	88.3	PASS
75	2021341242025	BHANDARE VAISHNAVI KRISHNA		9.24	8.55	85.5	PASS
76	2021341242027	PATIL ADITYA VUAY		8.62	9.06	90.6	PASS
77	2021341242029	RANVIR SHIVANI PANJABRACI		9.29	8.82	88.2	PASS
78	2021341242030	KALASKAR NARAYAN PURUSHOTTAM		9.52	9.23	92,3	PASS
79	2021341242031	NIMBALKAR KULDEEP DILIPRAO		9.43	9.21	92.1	PASS
80	2021341242032	BANKAR SWAPNIL RAJU		9.52	9.36	93.6	PAS5
81	2021341242033	BURSE PURVA SHANTINATH		9.52	9.17	91.7	PASS
82	2021341242034	SHEVALE KALVANI KAMALAKAR		9.57	9.38	93.8	PASS
83	2021341242035	SONAWANE SHUBHAM SANIAY		8.95	8.38	83.5	PASS
84	2021341242036	KHANDEKAR PRATIK PRABILIOAS		9.38	9.32	93.2	PASS
85	2021341242037	KAMBLE ALAY DAG ADUL		9.29	8.92	89.2	PASS
86	2021341242038	OUADRI ZAKILIDDIN HAVETANIDONI		NA	NA.	NA	Fail
87	2021341242039	KANDANCING ANIMUT CONTRACT	_	9.29	8.56	35.6	PASS
88	2021341242040	SHAMADI WAAR COUNTY	_	0.58	9.18	91.8	PASS
89	2021341242040	SHOPPING AN GET TRA VIAY		9.24	9.21	92.1	PASS
90	2021341242041	SHART 201A SAMEEN MOHAMMED FAROODUE		9.24	8.94	\$9.4	PASS
91	2021341242042	SPILLEL MANISACH DINUSHRAJ		9.62	3.42	89.2	PASS
	*051341545043	DOGHERIMANSHU NAJU NDRA		1.1	8.77	82.7	PASE

1.00
. 92	202134124204s					
93	2021341242046	LEHEKAR SAMRUDDHI SAMUSI				
94	2021341242047	WAGH PODJA BABASAHER	9.33	9.22	02.2	A
95	2021341242048	INGLE NAMRATA BHAGMANINAD	9.29	9.2	93.2	PASS
96	2021341242048	THUBE SHITAL KAILAS	8.48	8.53	85.3	PASS
97	2021341242049	RAUT SUWARNA SUDHAKAR	9.38	9.21	92.1	PASS
98	2021341242050	KATKAR SURAJ SURVAKANT	8.95	8.73	87.3	PASS
99	2021341242051	NIDHONKAR MAYURI SHANTARAM	9.43	9.21	92.1	PASS
100	2021341242052	RATHOD VAISHNAVI RAIESH	91	9.14	91.4	PASS
101	2021341242053	SHELKE PRAJAKTA PANDURANG	9.43	9.32	93.2	PASS
102	2021341242054	KAMBLE APEKSHA PRADECP	9.19	9.09	90.9	PASS
102	2021341242055	IADHAV KRUSHNALI SAIDAS	976	9.3	93	PASS
103	2021341242056	GOJE VEDANT ILTENDRA	9.33	9.14	91.4	PASS
104	2021341242057	KHADKIKAR SHRINIVAS SATISUPAG	9.48	9.42	94.2	PASS
105	2021341242058	KHAN DANISH SARBOD	9.24	8.05	30.5	PASS
106	2021341242059	SHAKH WAILT FUSTUM	1.29	9.02	90.2	PASS
107	2021341242060	SHAIKH MOHAMMAD AADIL NAZER	9.42	2,08	30.0	PASS
108	2021341242061	BHAGADE SHIVANI SLIBHASH	0.12	9.09	30.9	PASS
109	2021341242062	GOVANDE PRANALI SHIMRAO	0.14	2.00	87.1	PASS
110	2021341242063	KHANDALE PRADNYA SURESHRAD	452	8.83	88.2	PASS
111	20213420171124200000	JADHAV SNEHA SUKHDEORAO	132	8.3.2	33.4	PA55
112	20213420171124200000	MAGARE RUPALI RATAN	4.19	2.2	77	PASS
113	20213420181124200000	SIDDIQUI FATIMA ANAM JAWEED AHMED	9	7.93	79.3	P 455
114	20213420181124200000	MANE SHUBHAM GAUTAM	# 24	8.74	52.4	PA55

Contraction of the second s

Total Result :

Appeared	LLA.	1
Pass	114	100%
Fail	110	96.49%
Distingt	4	3.50%
First Ci	109	95.61%
Cirst Class	1	0.8045
second Class	-0.	0.00%

Subjectwise Result Analysis :

DBS 111 97.37% 3 1.50% 1 0.99% 0 0% 1 0.99% 111 9.99% 111 9.99% 0 0% 0% 0% 0% 0% 0% 0% 0% <th>Subject</th> <th>Pass</th> <th>Pass %</th> <th>fail</th> <th>Fail %</th> <th>Pass Class</th> <th>Pass Class%</th> <th>Second</th> <th>Second</th> <th>First</th> <th>First Class</th> <th>Distinction</th> <th>Distinction</th>	Subject	Pass	Pass %	fail	Fail %	Pass Class	Pass Class%	Second	Second	First	First Class	Distinction	Distinction
TOC 112 98.25% 2 3.50% 0 0% 0 0% 1 0.99% 1 0.99% 1 0.99% 1 0.99% 1 0.99% 1 0.99% 1 0.99% 1 0.99% 1 0.99% 1 0.99% 1 0.99% 111 90.20% 111 90.10%	DBS	111	97.37%	3	1.4045				6-4435.28	Class	96	POSTINUTION I	74
ML 111 97.37% 3 3.50% 0 0% 0 0% 1 0.99% 110% SS.16% ITR 112 98.25% 2 3.50% 0 0% 0 0% 0 0% 1 0.99% 111 99.10% BC 111 97.37% 3 3.50% 0 0% 0 0% 0 0% 111 100% 99.10% BC 111 97.37% 3 3.50% 0 0% 0 0% 0 0% 0 0% 0 0% 0 0% 0 0% 0 0% 0 0% 0 0% 0 0% 0 0% 0 0% 0 0% 0 0% 0 0% 0 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%	TOC	112	98.25%	3	1.5081	1	0.99%	0	-0%	1	0.904	1.55	
ITR 112 98.25% 2 3.50% 0 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%	ML.	111	97.37%	1	3 5090	0	12%6	0	0%5	1	1 99A.	11,0	28. 97.8
BC 111 97.37% 3 3.50% 0 0 0% 0 0% 0 0 0 0 0 0 0 0 0 0 0 0 0 0	ITR	112	98.2516	7	T 5/04/	0	0%	0	016	- 0	(10)	1.1.1	00 (UIU
CP1 114 100.00% 0 3.50% 1 0.99% 0 0% 11 4.09% 4.11 4.09% 4.11 4.09% 4.11 4.09% 4.11 4.09% 4.11 4.09% 4.11 4.09% 4.11 4.09% 4.11 4.09% 4.11 4.09% 4.11 5.0% <th< td=""><td>BC</td><td>111</td><td>07.17%</td><td>- 1</td><td>3.2079</td><td>0</td><td>0%</td><td>0</td><td>0%</td><td>0</td><td>110</td><td>111</td><td>1004</td></th<>	BC	111	07.17%	- 1	3.2079	0	0%	0	0%	0	110	111	1004
Seminar 113 99.1296 1 0.88% 0 0% 64 56% 36 11.5% 14 12.5% Internship 114 100.00% 0 0% 4 0% 64 56% 36 11.5% 14 12.5%	CPI	114	100.00%	- 0	1.7074		0.99%	0	10%	11	10.000	112	1202-
Internship 114 100.00% 0 0% 4 10.88% 0 0% 0 0% 0 0% 0 0% 0 0% 0 0% 0 0%	Seminar	112	00.1242	- 11	1.50%	0	0%	-64	5681	76	111111	- 196	57.78"
Internship 114 100.00% 0 0% 4 view view 0.00% 0.00%	Seminar	113	38.1534	_A.:	0.88%6	0	0%	0	110	- 20	11.2.20	4	12.251
	Internship	114	100.00%	0	0%	4	View.		- VC #		0.052	10.4	44.001.0

۰.

Sungechy ...

Class Teacher Prof.S.R.Kamite

ňoh Dr.V.B.Kamble

그들 후 변경에 안 있었었던 한 밥 때 왜 왜 왜 잘 봐 줄 수 있다.

140 P.E.S College Of Engineering, Aurangabad Department Of Computer Science & Engineering TYCSE AY-2021-22 SEM VI Result Analysis

.

.

7

Sr.No	PRN	Name	SCPA	CGPA	%	DESUUT
1	1921341242001	MOHAMATED FAIL MOULAND		curn	70	RESUL
2	1921341242002	CHAININED FAIZ MOHAMMED SHAKEEL	5.75	7.86	78.6	Pass
3	1921341242002	SHAIKH JUNED SHAIKH JILANI	0	0	0	Fail
4	1021241242004	KOKATE SHANTANU SANJAY	0	0	0	fail
e .	1921341242005	SURYA AADITI ASHOKRAO	6.05	8.12	81.2	Pass
3	1921341242006	DHADVE RADHESHAM JANARDHAN	5.9	8.01	80.1	Pass
6	1921341242007	SOLAT NEHA MOHAN	6.3	7.98	79.8	Pass
7	1921341242008	KHANDARE ROHIT NARAYAN	5.55	7.45	74.5	Pass
8	1971341242009	SHAIKH ABDUL GALOOR ABDUL HADI	0	0	0	fail
9	1921341242010	AKASH WADGAONKAR	5.75	8.36	83.6	Pass
10	1921341242013	GANORKAR ADARSH TAYKUMAR	0	0	0	fail
11	1921341242014	GAIKWAD SANDHIYA DIUP	5.75	7.64	76.4	Pass
12	1921341242018	SHINDE RAM HARDAS	5.75	8.11	81.1	Pass
13	1921341242019	SINGH ABHAY PRAEHUNATH	0	0	0	Fail
14	1921341242020	UMAR ABOUL AZIZ ABOUL WAHEED	6.7	8.4	84	Pass
15	1921341242021	SHAIKH ZAFAR AFSAR	0	0	0	Fail
16	1921341242040	TAHA AQDAS SHAIKH	6	7.97	79.7	Pass
17	1921341242047	MORE ROSHAN RAJENDRA	5.75	7.96	79.6	Pass P
10	1921341242051	PARKHE SANJANA AJAY	6.2	8.28	82.8	Pass
10	1021241242060	SATPUTE GUNJAN RAJENDRA	5.95	7.86	78.6	Pass
19	1921341242000	SVED ADNAN ALLAHMED ALL	6.45	8.12	81.2	Pass
20	1921341242061	DAIKRAO NIVITA ANAND	0	0	0	Darr
21	1921341242062	PAIRRAD MINING PAIRA	5.9	8.21	8Z.1	Pasa
22	1921341242063	KASHIDE GAURAY SANDAT	7.05	8.34	83.4	Dass
23	1921341242064	ASNA MARVISH SAJED KHAN	6.85	8.58	8.26	Pace
24	1921341242065	PAUL ROHIT MADHUKAN	5.85	8 13	81.5	1833
25	1921341242066	HADGEKAR UTKARSH ANIL				

27	1921341242069	GAGAN ADNAN AJAZ	1.2			
28	1921341242008	KHAN AHESAN DANISH ALIEAE MUL	5.8	7.16	5 720	1.
29	1971341342009	KHAN AMENA IMBOZ MHOD AN	0	0	13.0	P253
30	1921341242070	BODHANE PRATIK KRISHNA	5.8	7.91	79.1	7,81
31	1021341242071	MOHAMMAD ASHNEPUDOW MO	0	0	0	102
32	1921341242072	RATHOD SHRUTI MUKESHRUMAA	6.75	8.42	84.2	Pass
33	1921341242073	RATHOD PRATIK DHARMONI	6.7	8.59	85.9	Pace
24	1921341242074	THAKUR PRAVIN BAAANSIAAN	6.65	8.54	85.4	Pace
34	1921341242075	RATHOD AKSHAD ANI	5.95	8.5	85	Pass
35	1921341242076	SHAIKH AHMED SAZAL OSCI	6.2	8.23	82.3	Pars
36	1921341242077	BORKAR BITIKA CANGARAN	5.8	8.07	80.7	Pass
37	1921341242078	KHAN ABAS ANNI ANGADHAR	5.95	8.12	81.2	Pass
38	1921341242079	SHAIR AMAANULLAH SHAHID AHMED	5.9	7.7	77	Pass
39	1921341242080	GADEKAR SHLEHA AFROZ YUSUF	6.8	8.07	80.7	Pass
40	1921341242081	BATHOD AND PRIVATE VILAS	0	D	0	fail
41	1921341242082	PATEL CALLERAKASH	0	0	0	fail
42	1921341242083	EVED ZAIAU DDW COURSES	6.45	8.4	- 84	Pass
43	1921341242084	STED ZAINUODIN GOUSUDDIN KIRMANI	0	0	-0	fail
44	1921341242085	A HAN ARIE MOHAMMAD MOHAMMAD MUSLIM	6.05	8.1	81	Pass
45	1921341242087	INTRAAL SPIRETASH KRISHIYA	5.9	7.98	79.8	Pass
46	1921341242087	MOHD MURANMAN BALKHUSHNA	6.2	7.92	79.2	Pass
47	1931341242088	CHANCHAN AANNIEDDOIN MCHD FAYAZUDDIN	NA	NA	NA,	Fail
48	1921341242003	CALUE AND MATCH SORESH	0	0	0	fail
40	1031341242091	SALVE ANIL NATHU	5.9	7.29	72:9	Pass
43	1921941242032	PATANGE KESHAV VIVEKANAND	0	0	0	fail
50	1921341242117	BADWANE SAUREM SANDULAL	5.7	7.72	77.2	Pass
51	1921341242118	SHAIKH NEHAL AHMED MUKHTAR	5.8	7.76	77.6	Pass
52	1921341242120	GANVIR SEJAL CHANDRAKANT	6.15	NA	NA.	Pass .
53	1921341242121	MOHAMMAD UBAID UR RAHEMAAN MOHAMMAD JAWEED	0	0	¢ (Fail
54	1921341242122	SHIRALE ONKARESHWAR AMBADAS	63	8.1	81	Pass
55	1921343242124	ABHANG PRATIK BARKU	ø	0	0	fail
56	1921341612019	PATHAN DANISH KHAN HYDER KHAN	Ø	p	0	fail
57	2021341242006	ABOUL KASHIF SHAIKH RAUF	5.9	8.3	83	Pass
58	2021341242007	SHAIKH SAMEER SHAIKH MUSHTAK .	6.1	8.28	82.8	Pass .

	2021341242000				-	
60	2021341343000	KHILLARE TUKARANI SAMA				
61	2021341242009	GAIKWAD BHAGYSHD	1 22	-		
62	2021341242010	SHIRASE OMKAR SAMAND	3.8	8.33	83.3	Pa
63	2021341242011	JOSHI PRASAD MUMAY	 5.75	8.33	83.3	P2
64	2021341242012	LODHA SIDDUART	 6.1	8.63	86.3	Pas
65	2021341242013	SHAIKH BITHING SANTOSH	 0.1	8,47	84.7	Pas
60	2021341242014	GOSAUL PRAT	 5.80	8.3	83	Pas
00	2021341242015	SHAWLE SUNIL	 6.35	8.64	86.4	Pas
67	2021341242017	SHAIKH FAIZ AHMED SAMEER	0.0	8.74	87.4	Pas
68	2021341242019	CHONDE GIRISH HARISHCHANDRA	 0	0	0	fail
69	2021341242018	ZODGE PRAKASH RAJESH	 0	0	0	fail
70	2021241242019	RANDHE SANKET VILAS	 5.80	8.3	83	Pas
71	2021341242020	LAMSOGE SUDIP VINOD	 0	0	0	fail
72	2021341242021	KHANDEKAR ANIKET GUNVANT	 0	0	0	Fail
72	2021341242022	DESHPANDE PRA/WAL PRAMOD	 6.75	8.72	87.2	Pas
7.5	2021341242022	KHARAT RAJ RAVI	 0	0	0	fail
74	2021341242024	SHAIKH MD AZEEM SHAIKH NAZIMUDDIN	 5.8	7.36	73.6	Pass
75	2021341242025	BHANDARE VAISHNAVI KRISHNA	 0	0	0	Fail
76	2021341242027	PATIL ADITYA VUAY	 8.62	9.06	90.6	PAS
77	2021341242029	RANVIR SHIVANI PANJABRAD	 5.85	8.13	81.3	Pass
78	2021341242030	KALASKAR NARAYAN PUBLISHOTTANA	 6.5	8:59	85.9	Pass
79	2021341242031	NIMBALKAR KULDEEP DILIPRAD	 6.75	8.64	85.4	Pass
80	2021341242032	BANKAR SWAPNIL RAIL	 7.25	8.86	88.6	Pass
81	2021341242033	BURSE PURVA SHANTINATH	 6.2	8.48	84.8	Pass
82	2021341242034	SHEVALE KALVANI KAMALAKAR	 6.75	8.76	\$7,6	Pass
83	2021341242035	SONAWANE SHURHANA CANING	 5.75	8.33	\$3.3	Pass
84	2021341242035	VUSNOEVAD ORATIK DOADUUDAR	 7.25	3.84	58.4	Pass.
ec l	2021241242020	KANNE MAY BACADU	 0	0	0	Fail
95	2021341242037	CULEDRI 2411 DOGI HANTEN DOGIN	 5.85	NA	NA	Fall
00	2021341242038	LUADRI ZARIUDDIN NATEEMUDDIN	0	0	0	fail
5/	2021341242039	KANDANGIKE ANIKET GOVIND	 3.9	8.41	84.1	1285
88	2021341242040	SHAHAPURKAR GEETIKA VUAY	 0	0		- Dave
89	2021341242041	SHARH ZOYA SAMEEN MOHAMMED FARODQUE	0.0	0.4	0	fail
90	2021341242042	SHELKE DANISACH DINESHRAI	 -	0	0	tait
11	2021341242043	JOSHI MIMANSHU NARENDRA	 	141		

provide a second size it is the second s

- and the average of the

92	2021341242045	ENERAD CANADA					
93	2021341242046	WAGH ROOM SAMRUDDHI SANJAY	5.85	8.51	85.1	Pare	
94	2021341242047	WASH POOJA BABASAHEB	6.4	8.53	85.3	Pace	
95	2021341242048	THUSE NAMRATA BHAGWANRAO	0	0	0	fail	
96	2021341242049	THOBE SHITAL KAILAS	0	0	0	fail	
97	2021341242050	KAUT SUWARNA SUDHAKAR	5.85	8.06	80.6	Pass	
98	2021341242050	KATKAR SURAJ SURYAKANT	5.9	8.43	84.3	Pass	
99	2021341242051	NIDHONKAR MAYURI SHANTARAM	6.65	8.56	85.6	Pass	
100	2021341242052	RATHOD VAISHNAVI RAJESH	7.8	8.97	89.7	Pass	
100	2021341242053	SHELKE PRAJAKTA PANDURANG	6.6	8.5	85	Pass	
101	2021341242054	KAMBLE APEKSHA PRADEEP	7.2	8.81	88.1	Pass	
102	2021341242055	JADHAV KRUSHNALI SAIDAS	6.4	8.5	85	Pass	
103	2021341242056	GOJE VEDANT JITENDRA	6.65	8.78	87.8	Pass	
104	2021341242057	KHADKIKAR SHRINIVAS SATISHRAO	0	0	0	fail	
105	2021341242058	KHAN DANISH FARROQ	6.3	8.38	83.8	Pass	
106	2021341242059	SHAIKH WAJIT RUSTUM	0	0	0	fail	
107	2021341242060	SHAIKH MOHAMMAD AADIL NAZER	6.2	8.01	80.1	Pass	
108	2021341242061	BHAGADE SHIVANI SUBHASH	6.3	8.44	84.4	Pass	1
109	2021341242062	GOVANDE PRANALI BHIMRAO	0	0	0	fail	
110	2021341242063	KHANDALE PRADNYA SURESHRAD	0	0	0	fail	1
111	20213420171124200000	JADHAV SNEHA SUKHDEORAO	6.6	8.07	80.7	Pass	
112	20213420171124200000	MAGARE RUPALI RATAN	0	0	0	fail	l
113	20213420181124200000	SIDDIQUI FATIMA ANAM JAWEED AHMED	0	0	0	fail	l
114	20213420181124200000	MANE SHUBHAM GAUTAM	0	0	0	fail	l

14

1.1 (1.1) (2.1)

10.5

Total Result :

Appeared	117	100%
Pass.	78	66.66%
Fail	39	33.33%
Distinction	- 23	62.39%
First Class	5	4.27%
Second Class	U	0.00%

Subjectwise Result Analysis :

Subject	Pass	Pass %	fail	Fail %	Pass Class	Pass Class%	Second Class	Second Class%	First Class	First Class %*	Distinction	Distinction
CD	93	79.48	24	20.51%	64	68.81%	10	9%	15	16,12%	30	3.325
CN	102	87.17	15	12.82%	67	66%	18	18%	13	12.74%	2	1,467.1
10T	109	93.16	11	9.40%	79	72%	13	12%	11	10%	2	210
CB	106	90.59	4	3.41%	86	81%	0	0%	.1	154	0	112
HCLOOPI	110	94.01	7	5.98%	0	0.00%	0	0%	11	04.54%	-34	54.2916

Bongeota Class Teacher

Class Teacher Prof.S.R.Kamite

HOP Dr.V.B.Kamble

12 al 20 al 20

1 3 1

P. E. S. College of Engineering Nagsenvana, Aurangabad (M.S.) - 431902

Department of Mechanical Engineering

Result Analysis of Final Year B. Tech. (Mechanical Sem. -- VIII) Academic Year -- 2021-22

生活系

Grade	No of Students	%
DISTINCTION	118	95.16
FIRST CLASS	4	3.22
FAIL	2	1.61
TOTAL NO OF STUDENTS	124	100

N DISTINCTION # FIRST CLASS ETAIL

HEAD OF DEPARTMENT Mechanical Engineering

PES College of Engineenting Igromubad